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THE SHAPLEY VALUE IN THE NON DIFFERENTIABLE CASE*

by

J. F. Mertens *

Introduction

.- " % In their book '4Values of Non Atomic Games4* Aumann and Shapley
/

119741 define the Shapley value for non atomic games, and prove

existence and uniqueness of it for a number of important spaces of games

like pNA and bv'NA. They also show that this value obeys the so-

called diagonal formula, expressing the value of each infinitesimal

player as his marginal contribution to the coalition of all players

preceding him in a random ordering of the players.+say if the worth

v(S) of coalition S is expressed as a function of finitely many non

atomic probabilities ul ..... un by

v(S) = f(u1(s),. ..,n(S)) , fcE , f(Q) 0

then the diagonal formula takes the form

1O~)]() =~u~s! f (t,t,...,t)dtW v))(s) = lui(s) f
0 i

or in general, more symbolically

1
[*(v)1(ds) = f[v(tI + ds) - v(tI)Idt

0

*This research was done in part while visiting the Institute for AdvancedStudy
at the Hebrew University of Jerusalem and in part was supported by the
National Science Foundation Grant SES 8201373 and in part by Contract

t ONR-NO0014-79-C-0685 at the Institute for Mathematical Studies in the
Social Sciences.

"CORE, 34 Voie du Roman Pays, B-13h8 Louvain La Neuve, Belgium
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This interpretation in terms of a random order depends on the fact

that, for a large number of players, player ds will in a random order

occur at some time t uniformly distributed on [0,11, and that the set

of players preceding him will be an almost perfect sample of size T of

the whole population - so that its worth will be essentially v(tI) =

i rf(til(1 ,..,n(M)).

Those results have a large number of important applications - they

do however depend on the differentiability of f along the diagonal.

The diagonal formula was later extended, in "Values and

Derivatives", Mertens 119801, to a much wider class of games, including

spaces like bv'NA in which the function f cannot be called

differentiable.

The extended formula would apply say to majority games (v(S) =

I(P(S) ) a) 0 < a < 1); or even to majority games in several different

houses (v(S) = I(u1(S) a i 2 (S) ;a ...a V(S) ; a) 0 < a <1)

provided all quota's a are different. (I(-) denotes the indicator1

function.)

But the case where the quotas would be the same - say all 1/2 -

would be excluded, at least when n > 2.

Similarly, in economic applications, economies with strong

complementarities, like "n-handed glove markets" (v(S) =

min ui(S)) would remain excluded - again at least when n > 2.
i=l , • • •.,

Moreover, no value operator at all was known to exist on any space

of games that would include all n-handed glove markets - except

(Y. Tauman[1981]) when n is fixed and in addition all measures i
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are mutually singular, i.e., the different types of gloves have disjoint

sets of owners.

S. Hart's "measure-based values" 119801 are an illuminating

approach to this problem. They highlight the fact - which could already

be seen in Aumann and Shapley's analysis [19741 of the three-handed

glove market - that in some sense different finite approximations to the

game may yield quite different values, according to one or another part

of the player set - say the owners of one or another type of glove -

approximates better the limiting game. For the approximations consid-

ered, the distribution of a random sample around the diagonal is essen-

tially normal, with a covariance matrix that is quite sensitive to the

relative degree of approximation in different parts of the player set.

Surprisingly, as we will show, in the limit the symmetry axiom -

i.e., to ask that the solution depends only on the data of the game - is

strong enough to force the distribution away from the normal distribu-

tion, and to impose, in some sense, a unique answer.

Here we extend the diagonal formula of Mertens [1980] to include,

in addition, all situations of this type.

We get in this way a value - of norm 1 - on a closed space that

will include DIFF - and DIAG -, the closed algebra generated by bv'NA,

and also all games generated by a finite number of algebraic and lattice

operations from a finite number of measures, and all markets functions

of finitely many measures. The space will also include the finite games

and the "regular" games with countably many players.

' I
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Intuitively, the diagonal formula is extended by taking the

derivative not on the diagonal, but at some small perturbation of it -

say tI + EX instead of tI - and by averaging the result for some

probability distribution over perturbations. We prove further a weak

form of uniqueness, in the sense that there is only one such probability

distribution over perturbations that would yield a value.

In parallel, another extension is made to previous approaches,

mainly in order to make the value invariant under all automorphisms of

the lattice of coalitions, instead of only all automorphisms of the

player set. In particular, this allows us to deal with finitely

additive measures just as well as countably additive ones.

- The basic definitions are given in Section l Section 2 defines

the probability distribution over perturbations and shows its unique-

ness. Ar. explicit formula for the value of games of the type discussed

above (n-handed glove markets, majority in several different houses) is

derived in Section 3.

SECTION 1

We follow basically the terminology of Aumann and Shapley

[19741. (I,C) denotes the player set, C being a a-field of subsets

of the set I. A game is a real valued function v on C, with

v(O) = 0. Its variation norm lvi BV is the supremum of the variation

of v over all increasing chains (C1 C C2 C ... C Cn ) in C.

(BV,I*IBV) denotes the Banach algebra of all games of bounded

variation.

JE
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FA is the subspace of BV consisting of additive set functions.

We are going to define a value - more precisely, a projection 4

of norm 1 of some closed subspace Q of BV (FA C Q) onto FA, such

that [4(v)](I) = v(I) and such that 0 is symmetric in the sense

that for any automorphism 8 of the Boolean algebra C, if et is

defined on BV by [8t(v)](S) = v(e(s)), then 8 (Q) = Q and

4 0 o 0=o.

In fact, 4 will be constructed as the composition of different

positive linear symmetric mappings of norm 1: 4 = h 0 $3 0 t2 o 0 i"

(1.1) 0 1 maps any game into the corresponding constant sum game,

I41(v)](S) = (i/2)[v(S) - v(Sc ) + v(I)I: obviously i is a symmetric

projection of norm 1 onto the space Q1  of all constant sum games w

(w(S) + w(Sc) = w(I)), such that (' (v)M(I) = v(I).

(1.2) 4 2 is the extension operator:

B(I,C) denotes the space of bounded measurable functions on

(I,C), B+ (I,C) is the space of "ideal sets", i.e., {fIf E B(I,C),

0 4 f I}.

For functions on B (I,C) (with (O) = 0), one defines as
1

previously the variation norm HV IBV by considering all possible

increasing chains in B+(I,C), and one defines 7+(x) =

sup C((f i+l) - 7(fi)), and similarly for v obviously
O4fj i f j+l 4X i

IBV VW +VMV -V
E~~IIBV (I)+ (I), ~= --

Similar definitions are possible for the space F of functionsI£
7 (7(0) = 0) defined only on the c-neighborhood of the diagonal

T+

V = {f E B +(I,C): sup(f) - inf(f) • 0}, and lead to I0I and
£1 IBV,C

Sauk



- v by restricting all chains to remain in this neighborhood. By

definition I1 IBVO = inf N IBVE"
C>O

Following Mertens [1981] , we define F as the set of triplets

(V,Ve), where w is a finite measurable partition of I, v is a

finite set of non atomic elements of FA and E > 0. F is orderea by

a, iff Ira 4 n, (r , is a refinement of r ) and

v C v and e ; c (F,4) is filtering increasing.

Cn is the set of increasing sequences 0 ( f1 ( f2 t ... 4 fn 4 1

of measurable functions, and En the set of increasing sequences

S C S C S ... C Sn in C.

For any a E F and f E Cn, we define Pa,f as the set of aLL

probabilities with finite support on En such that )iE(I(S.)) - f_: < E
n i

uniformly on 7, and such that S E a, T E wa S T= imply

(i) (S n S )n=  is independent of (T n S )n
1 1=1 i =

(ii) V (S S.) = va(fi * I(s))

and (iii) f. I(S) = o => S n s. =1 2.

Intuitively P E P if P is the distribution of a random set
ci,f

(or sequence of sets) that is very similar to the ideal set f - "very"

being measured by a E F.

Obviously a 4 a' implies Pa,f D P , f and it :'c.io; 'rom

Mertens [19811 that always P Q * 0.

For any game v, and any f E BI(I,C), let (f) =

lim sup Jv(S)dP(S), v(f) = lim inf fv(s)dP(S). (The inclusion
aEF PEPaf aEF PEPaif



relations a 4 a' => P ,f Paf imply that the limits exist, the

corresponding sup's or inf's being monotonic in a.) Now v is in the

domain D of 6 iff V X 6 VE, i(x) = v(x), and then Oc(v) E F is
2 2

defined by I*6(v)](X) = 7(X) = v(X).
2

Obviously DC is a closed (in the maximum pseudo-metric) vector

subspace of the space of all games, and symmetric, and 0C is a sym-
2

metric linear operator from D to F6  [for the symmetry properties,

it is sufficient to check that the set of non atomic elements of FA is

invariant under any automorphism of the Boolean algebra C, and to

define 6(X) for x in B(I,C) in the obvious way if X is a step

function, and by a uniform limit in general, so as to be able to define

et on El.

Further 02 transforms nonnegative games into nonnegative
2

elements of F6 , and monotonic games into monotonic elements of Fe,

and is of norm 1 both in the maximum norm and in the variation norm -

this follows from the fact that V n, v f E Cn, Paf 0 0.

Finally one has obviously [t0(v)i(1) = v(I), and e1 < C2 =>
21 2

D D D and if v ED then 2 *(v) = O2 (v) on V
C- 6 2 6 2 2 2 61

Observe that for games with finitely many players, 02 coincides

with Owen's multilinear extension, and that for games in EXT (cfr.

"Values and Derivatives"), 0 2 coincides with the extension as defined

in "Values and Derivatives".
Observe also that 0C obviously maps constant sum games v E D

2

into constant sum games w E Fe  (i.e.: w(X) + w(l - X) =

w(l) V X G BT(I,C)), and that if v E D., then 4l(v) E D6 and



*EV (v) '(v), where 0 maps F into F by the formula

[01(w)(X) = (1/2)fw(x) - w(l - x) + w(i)J.

(1.3) 03 is essentially the derivative operator defined in

"Values and Derivatives":

First, if w E F., define i on {f E B(I,C) : sup f - inf f 4 el

* by (f) = w[max(O,min(l,f))].

Obviously w + 7 is symmetric, positive, linear, etc., and if

w is constant sum, w(x) + w(l - X) =  ().
1

Let now [$3 (w)1(X) = lim f[(i(t + TX) - w(t - TX))/2Tldt
T+O 0

whenever w E U F and the limit exists for all X E B(IC).
C C

Some remarks are in order.

First, if one deals only with games in BV, there would be no

problem of existence of the integrals - otherwise, we make the explicit

assumption that, for any x, 5(t + TX) is a.e. defined and integrable

for all sufficiently small T.
1

We will also assume that, for all X E B(IC), lm f[w(T(u + X)+) +
v+O 0

w(T(u + X)-)]du = 0.

This is for instance satisfied, by the dominated convergence

theorem, as soon as w is bounded and lim w(TX) = 0 V X E B+(I,C).
>~ 1T 0

Obviously the mapping 03 is positive, linear, symmetric.

Let us show that

o3 (w)](,A + bX) = aw(l) + bI(0 3(w))(X)1 V a, bE R

In particular we will tave 103 (w)J(l) = w(l), so that *3(w) is

linear on every p. - icnt ,xng the constants.
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It is obvious that [t3(w)](bx) = b[O 3 (w)](X) y b, v X. So we

only have to show that It3(w)I(l + X) = w(l) + [t3(w)](X). Thus

w Tr(t + T + TX) - 7(t - T- tx) dt
0 3T(w)(1 + X) = 0 0 2T

T+O 0

1 +)T)1
= m f (t + 1) - (t - ) d (t + Tx) - ;(t - TX) dt

T-0 0 
2T0 T

1

+ l f[ (t + T + TX) - (t + TX) - 1(t + T) - (t - T- x)

T40 0

+ w(t - TX) + - T)]dt.

The first integral equals

1l+t I-T 1I+T
L(s)ds - f 7(s)ds] 1 f__ ;;(s)ds - fi(s)ds]

-T I-T -T

Since w(x) + w(l - X) = w(l), this equals

T 1 T 1
w(l) - '2 f 7r(s)ds] = WW fw(s)ds = w(l) - fw(Tu)du

-2 L
0  0

and this last integral converges to zero by assumption. So the first

integral converges to w(l).

The second integral converges by definition to 
103(w)J(X), so

there remains to show that the last integral converges to zero. This is

equal to, writing F+(t) for i(t + TX) - i(t), F (t) for

- TX) -

I4
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1 1

2 T [f(F,-t + 
')  - F-+(t(Fdt + f(F- - F(t - r))dt]

0 0

1+T 1 0
f- [ f F(s)ds - fF (s)ds + f F_(s)ds - fF (s)dsl
1 0 I-T -T

Now the relation w(X) + i(l - X) = w(I) implies

F+(t) -F (i - t), so that the last integral equals

0 T T 0
SJ- [- f F (s)ds - fF(s)ds - fF (s)dss

-T 0 0 -T

-- - j r F (s)ds + fF (s)ds-

-T 0

T

- I[F (s) + F_(-s)lds
T 0

i

- f[F (Tu) + F (-Tu)]du
0

1
- - f[&(T(u + x)) - (Tu) + i(-T(u + x)) - (-Tu)1du

0

1
f[[W(T(u + X)+) + w(T(u + x)1 - w(TU)jdu (for T < 11 + UXU - )

0

and this last integral tends to zero by assumption.

Let us finally show that 0 is of norm 1. Let X < X' and

consider any increasing chain

X 1 ... n ' X' •



Denote by V(v)[x,x'1 the supremum of the variation of v over all

such finite chains. Let IX' - X1 = 6, then V(v)[X,X'] 4 V(v)IX, X + 61,

and there is no loss in restricting the chains to satisfy Xl= X, xn = X + 6.

If v = 3(w), and we take T > 0 sufficiently small such that

all ;(t + Txi) exist, then

iv(Xi+l) - v(X)I = lim t + TXi+l) - w(t + Xi)
i

+ -TX.) - (t - TXi+l)IdtI

lim- 0f[jl:(=i + TXi+1 ) - (t + TXi)! + ji:(t - Txi)
0Oi i

- w(t - rXi+l)ldt

or, letting jwj = WT +

( lim f[1l(t + +(x + 6)) - I;1(t + Tx) + Iil(t - TX) - I (t - (x +))]

0

1+T 6  1 T6

lim [ I Irl(t + TX)dt + f Iw)(t - Tx)dt - 1 I~lt + TX)dt
1 -T6 0

0
- I I7l(t + TX)dt]

_T6

But, for all X, we have 0 lrl(x) ' I I(l) = v(l) + w-(l)
C C

lWI IBV,C* Thus
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l+t8 6

v(X _ v(x i) 4 lim -- O ! I~lBvC dt - ()dt
i I-T8 -T6

IBVC

and therefore, e being arbitrary,

V(,3 (w))[x,x'l Ux' - 0 " IIBV •

In particular l 3(w)1IIB V = V(03(w))[Ol1 . OWNIBV,0 wk iiV' which

shows that ' is of norm I. 'I

Since v = 3(w) satisfies v(a + bX) = av(l) + bv(x), we nave

(v(t + Tx) - v(t - Tx)) = v(x)2T

so that (1/2T)[V(t + TX) - V(t - TX)] = v(x) for ITX1 4 t 4 2 - ITX1.

If now IVliB V < -, then by v(a + X) = av(1) + v(x) we get

V(v)[a - 6, a + 6] = V(v)[O,261, which equals by homogeneity

26V(v)[0,1] = 261vll. Therefore, for all t we have

IL ' (t + TX) - -(t - TX) KIxlVU

Also, Ivi < - implies that f(t + TX) is integrable (in t) - as

a function of bounded variation - so that, by Lebesgue's bounded

convergence theorem

1
f I 1 (t + Tx) - (t - TX)]dt + v(x)
0
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Thus, to show that v E Dom(* ) and that #3(v) = v there only
Thus,3 3(vol

remains to show that v is bounded and lm v(TX) = 0 V XE B+(I,C).
r+0

This follows again immediately from the boundedness of the norm of v

and from the homogeneity.

Thus if v = 43(w), Ivi < - implies v E Dom(#3 ) and *3(v) = v.

Therefore we get then V(v)[x,x'] = V(03(v))[XX'] ' x - XlIlvl

and this relation is anyway true if Ivi = + -. To summarize, we have

shown that

Proposition 1:

- 43 is positive, linear, symmetric.

- 143 (W)Jl) = w(l).

- n3() IBV l WNIBV,0 .

- v E Range (t3) implies

. v is linear on every plane containing the constants,

. V(v)[x,x'1 4 NX' - XI ° Ivi V X, X' E B(I,C),

. further, if Nvi < -, then v E Dom *31 and 3(v) = v.

For every E > 0, one gets a different domain for 41 0 02 0 3

However, the composition having norm 1, and the domains being increasing

when c + 0, the composition can be extended to the closure of the union

of those domains. Let us call * this operator.

(In Section 4, we will show how to define directly an operator

with closed domain extending * - the present approach seems however

easier for getting the main idea through - being more closely related to

the literature.)
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(1.4) Let us now prove part of our claims.

Let Q = {vjv E Dom *, W(v) E FA}: obviously Q is a closed

symmetric space, and * is a value on Q.

It is obvious that Q contains DIFF, DIAG, and all games

satisfying v(S) = v(Sc ) V S E C.

Let us show that Q also contains bv'FA (and all "regular"

games with countably many players).

bv'FA is the closed space generated by all games of the form

v(S) = f(w(S)), where u G_ FAI and f is monotonic, continuous at zero+

and at 1, with f(0) = 0, f(l) = 1. It is sufficient to show that

v E Q when v is a generator. After applying 0, to v, one may±

assume further that f(x) + f(l - x) = I.

Let us apply $2 Let P'= u. where V i V 0, i =>

11 pi i is two-valued for i > 1 and P is non atomic (i.e.,

1 :i(I) is maximal given the other conditions). Assume without loss

of generality that vi(W) is monotonic in i > 1, and let a W,

v. = a -l " whenever ai * 0, na = sup{i la i * 0}.

Denote by wt any partition of I such thatn

V i, j E (l,...,n 1 na (i J) A E . : Pi(A) * 0, j(A) = 0

Let an = (Wni 0 ' 2 - n) " Then for any P E Pa ,g one has P-a.s.

0o(S) = Uo(g), for i ; i i(S) G {0o i (I)} has expectation Mi(g) up

to 2- n  and 1 (S) ... un(S) are independent.

Let also Yg = u o(g) + I aiXi. where the XiIs are independent
i~l

random variables with value in (0,11, and with expectation vi(g).

=J
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It follows that, when n goes to infinity, the distribution of

U(S) (= PUi(S)) converges weakly to the distribution of Yg.

Further, when n < -, then U(S) is concentrated on the (finite) seta

of atoms of Yg . It follows that E(v(S)) converges to 7(g) = Ef(Y )
g

except maybe when na = +m and the distribution of Yg has some atoms

at discontinuities of f.

Recall that, for g arbitrary, one sets V(g) = V(max(O,min(1,g))).

Obviously V(t + g) is integrable - being monotonic. We now show that,

even when na = + , (t + g) is the extension of v at t + g, except

for at most two values of t. Indeed, the distribution of Y is

obviously non atomic except when lim vi(g) A (1 - vW(g)) = 0. Since we

work only on some E-neighborhood of the diagonal, we can assume

sup(g) - inf(g) < 1, so that the only possible exceptions occur when

lim vi[(t + g)+] = 0 and when lr v i (t + g) A ii =1. It is

sufficient to consider the first case, which is true for all t satis-

fying 0 4 t 4 -im sup vi(g) = t . But if 0 ( t < - lim sup vi(g) =
i -N i +

to, then B = {wjg(w) < - (1/2)(t + t )) is some measurable set, and,

since vi(B) = 0 => vi(g) ) - (1/2)(t + to). one has vi(B) a 1 except

at most finitely many times - otherwise one would have

t0 = -im sup vi(g) 4 (1/2)(t + t ). thus t ) to contrary to our

assumption. Remark that on B one has (g + t) - 0.

Thus, as soon as our partition w refines B, we will have that,

with probability one, B n S * # i.e.. S C Bc , and that vi (Be) 0 0 at

most finitely many times - say v i(Be) - 0 V i ) n . Therefore u(S)no 0
0

will have the distribution of Po0(g + 0 + + !tx i where
0 tii

L _.1 1
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IE(Xi) - vi(g + t)+i 2 n. Since no depends only on g and t,

this implies u(S) is a distribution on a fixed, finite set of atoms,

that converges weakly to the distribution of Y and thus the(g~t)

probability of every atom converges: we still have that (g + t) is

the extension of v at (g + t).

Thus the only possible troublesome value of t is t = -lim sup v.ig)

11

(and dually 1 - t = lim inf v.i(g)).

In particular, for any X, V(t + TX) is a.e. defined and inte-

grable for all sufficiently small T. The second condition for

v E Dom 03 was satisfied as soon as v is bounded and V(TX) con-

verges to zero for all X E B+(I,C); v being monotonic it is sufficient
1

to show that lim 7(T) = 0; this follows from (T) - (Cav f)(T)
T 0

because Cav f is continuous and vanishes at zero, f having this

property.

Thus to show that v E Q there only remains to show that
1

(1/2T)fj(t + TX) - (t - Tx)]dt converges to some element of FA. To
0

facilitate this, we begin by the lemma.

Lemma: If

- (t + TX) is, for every X, a.e. defined and integrable for

all suffiAently small T
1

- f(vIr(t + x) ] + vLT(t + x)-Idt converges to zero with
0

T (> 0) for all x
1

---f (t + Tx) - V(t - Tx)ldt converges for all X B(I c)
0

then v C e+_,,> -.<. he la.-t exjnresLsion converges for all X C= B(IC).
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Proof: Our assumption immediately implies the convergence when

X 0, and it is sufficient to prove the convergence for any * satis-

fying 1 ( 1. Write thus i = 1 + X, with X 4 0; the computation we

did when proving that 0 (w) is linear on every plane containing the
3

constants proved also that f3(w)(*) exists - and this finishes the

proof. Q.E.D.

By virtue of this lemma, it is sufficient to show that *(T,X) =
1

(I/2T)f[(t + TX ) - (t - Tx)]dt converges to some element of FA for
0

all X e B+(I,C), where V(g) = Ef(Y-), with g = 0 V (g A 1), and
n a

Yg = ao v(g) + a iXi. where the random variables Xi are independent,
g ~l

with values in {0,1} and with expectation vi(g).

Let now fL(x) = [ (f(y+) - f(y)) where f(y+) = ljm f(y + C).y<x C+O
Let also fR(x) = f(x) - fL(x): then both fL and fR are increasing,

fL is left continuous and fR is right continuous, so that

1 1
f(x) = fI(x ) q)dfR(q) + fI(x > q)dfL(q)

0 0

Since O(T,X) depends linearly on f, and since 0 4 *(T,X) * f(T,I) 4 1

using the monotonicity of v and the relation 0 4 X 4 1, we can apply

Fubini's theorem to get

• 1 1

f(TX)= f'q R(T X)dfR (q) + f q L (TX)dfL(q)

when *q,R and qL denote the function corresponding to the case

where f(x) = I(x ) q) and f(x) = I(x > q) respectively.



Bu q ,x' and *q(T~x) being uniformly bounded, the

bounded convergence theorem implies that it is sufficient to prove that

q% (TX)and * qL (TX) converge to some element off FA.

Thus, we have reduced the problem to the case where f(x) = I~q <- )

where <- stands for either 4 or <

Remark that for i > 1, v.)= 0 V (vi (g) A 1), and that

v (t + TrX) = Z + TV.(X). Let for short p, = v.(X) (thus

0 4 Pi _ 1), and let Z (i = l,....na) be independent random

variables, uniformly distributed over [0,11. Then

n!

1 na
*(T,X) = 2 T EfI[av 0((t - TrX)*) + a ai (Z . t - p) <. q

0i

n
a

<0 a0V ((t + TX) Ni) + a i I(Z. t + Tp .) ]dt,
i= 1

where <: stands for < or C when <- is (or < respectively.

Let also (T,X) be the same expression, with v [ (t - TX)+] replaced

01

by t - p ,and v 0 [(t + TX) A 1 replaced by t + pou Then

obviously standand the integrands can differ ony wnen

t 4 T or tha T, so that

n

T a

o EfI[q < x at + Tp) + Ia i(Z. t + Tp )]dt
0 0=l

+ a similar integral between 1 - T and T

Obviously, the right hand member goes to zero with T. Thus if we set
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'1
1(p) = EI[a(t -P) + ,aiI(z t -pi) <: q <. a0 (t + po)

+ [ aI(z t + pi)]dt
± )1

we have to prove that * is differentiable at zero, i.e., that

10 (I'/)*(rp) exists and is linear in p - i.e., a continuous linear
T;O
functional on I.. We will even show that the limit is of the form

lyiPio with Yi) 0, lyi = 1.

We will show that this is the case for all sequences Pi having

only finitely many non zero terms.

The result will follow from this, because, for an arbitrary

sequence pi (0 • pi • 1), one has then by monotonicity

1 k

1 m inf 1 W('p) ) t YPi thus
i=O

lm inf I (Tp) > y , and
,+'O "r 0

lm inf *((l - p)) ) 1 -7YiPi
T0 T

and since (llr)[*(Tp) + *(T(l - p))] converges to 1 (this is the

computation we did when proving that any v in the range of *3  is

linear on every plane containing the constants), it follows that

l 0m (l/T)*(Tp) = TYip i .r.0O 0
Thus we have to show that *(p) is differentiable at zero as a

function of the variables Po ... Pk' the other pi's being fixed at

zero.
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Further if then Yi (*/aPi)p= O 9' we have to show that

yi = 1 (because obviously Yi > 0 by monotonicity of i)"
i)O

Writing the expectation in the formula of *(p) as the expectation

of the conditional expectation given Z1 ... Zk  yields
11

'(p) -_ 1 fIHY(p) - Hy(-p)ldt

y2 ~lk 0t

where

HY(p) =n (j + (2y. - 1)(t - Pi A )Fa(q a o - [.)

with

Fk(x) = P(a t + I aiI(Z C t) <: x)
ti>k

Let

kk k

(P) = + (2y - A)(t - p )F (q + aop ay
1 t 0 0

and

I k -[YP

yE{0,1}

One shows, Just as before for - *, that - * is differentiable at

zero with zero differential (the difference of the integrands is anyway

small, and different from zero only on a small part of the domain).

Thus to show the differentiability at zero, it is sufficient to
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show the differentiability at zero of the expression

k n. I n k a
(1 Pi p ft FC x+aopo d
jiJ. 0

since (p) is a linear combination of expressions of this type.
k ni

Since ( H Pi )  is obviously differentiable, this amounts in turn
i=l 1

to the differentiability at zero of ftnFt(x ±a 0p0 )dt.
0

If this differentiability is proved, then using k = 1,

111 1 1. .i - Jm f2p [Ft(q) - F (q - a )ldtPl1+0 Pl P +0 2pl1 0

= j1 F1(q) - F -(q  al)]dt
0

1 1(

=Eflaot + 7 a.I(Z. 4 t) <: q .at+a 1  a.I(Z. 1 t)]dt
0 i>l i o i>l

or, since Z, is, like T, uniformly distributed on t0,11 and

independent of the other Z. 's, we get1

Yl = P1 aoZI +  Z aPi I(Z i < z 1 <: q <" a0Z1 + ia(zi Z1,]

Let, for k ) 1, Jk( (w) denote the random interval (of length ak)

ixlaoZk + I aII(Z i < Zk ) <: x " aoZk + [ aiI(Z i C Z)}
i l i~1

(obviously the Jk() are disjoint if we restrict ourselves to the set

of w's (with probability one) where i j J => ZiW) * ZJ (W),

0 < Z (w) < 1).
1
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Let also J (W) = 10,11 U J (w). In those notations
0 k~ll k

= pi = P(qe J.(w)) for all i > 1

Similarly, using k 0, we get, using W(t) = a t + [ aI Z )

i >1

Yo = lim 1L = lir L f[F°(q + ap)P O Po 0 P o0 O 2p 0 0 T

- F°(q - aopo)ldt

11
= lim - SPjq - a p0 <- W(t) <: q + aoPo ldt

P o0 2po 0

Thus, if a = 0, Then yo = 0, and the differentiaoility condition To

check is obvious, so there only remains to show thhLi)iy. =

P(q E U Ji(w)) = i. When there are only finitely many non zero ai's,

then q E U J.(W) = {x;0 <: x <. 1) for any w, wh.ie ir there are
i

countably many non zero a.'s, a recent result of Berbee [1981 proves
1

that P(q E U J(w)) = i [even that P(q E u ()) = 11.
i i

There remains therefore to consider the case a > 0. Since
0

I - Yi P(q E J0 (w)), the property )yi = I amount to

001

P(q E J 0W) = a 0r li 2 fP[q - a op <- W(t) <: q + a 0p Idt
p +0 000

On the other hand, the differentiability at zero of ft n (x + a0 p0 )dt,
0

when Fk(x) = P(aot + I aI(Zi 4 t) 
< : x) can be rewritten, by letting

i>k

al -ak+i for i P 1, a = a (a 0=> o> 0), a" a'/o,
0
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F (y) = k(o) ( P(a~t + a'!I(Z 4 t) <: y)), as the differenti-
t t ~ 1 0 3,

ability at zero of ftnF + ap )dt or, letting z = x/o, and
0 ta 0 000

writing ai  for a! - so Ft becomes Ft - as the differentiability of

a ftnFo(z)dt (z) as a function of z.
0 't = n

To show also that Yi = 1, we have to show further that, when

n 0, the derivative is P(z E J (w)). We have0

) a 1
S n (z + 6) - n = E ftn1 jz <. W(t) <: z + s6dt

0

Let T = inf {t ) 0 A3.. z <- W(t)}: if z <. W(t) <; z + 6, we havez
T ' T< + 6/a t thus Tn 4 n T r( !

1 + 6/a + -)n therefore,
Z Z 0 Z z L

i = (a/6)T n Ilz <. W(t) <; z + 61dt,0 0

a 1 a

a zZ

ao
T n

1
Now X =T'fI J(W (z + 6u)du.

If z 1 Ji[(), then lim M (x) = 1, except maybe if z is

a boundary point of some J i() - but this event has probability zero,

even conditionally on all Z (j * i) (using a > 0).
If z E J0 (w), then (106) f IJoM (x)dx

(1/6) f I (x)dx, and it is sufficient to show that the

conditional expectation (given z E J (w) and given T.) of the sum

converges to zero. Now, if z E J0 (w), x > z, then Ij ( ()(X) •
1
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f(T v(xa Z. T) I(T zv(xa Z. T +

((x - z) A ai)/ao), and then

P(x E Ji(w)ITz, z C Jo_1 (z a.

e 1 T [ a
z 0

Thus

P(x E U J(w) z EJ (w) T x- a) ,

z~~~ e iw.Tl

Also, for a > 0, 1 - T > 0 with prooability one if z < i, and
0 z

since a < -, it foliows that tne right hand member goes to zero when

x + z < 1. Thus the left hand member belng bounded, we get, -f z < 1,

and obviously also if z > ", I m P(x C U Ji(W)iz I z (W) an,
x-z I

therefore by symmetry 1im Px CU J.(w)wz uJ.(w)= 0 and thus

I ()(x) is continuous in probability. In particular ' y,(x) is a

continuous function of x, and also L 1)>) convergesi

probability ro T n I (z):(, x ) so tnar by Lne bounae,
0

ccnvergence theorem (1/6)LO z + 5 - onverges ton

+(z + 6 e 10,11)ELT nIo ()z.

Since the equation '(z) = P(z E J (w)) is needed only "or

0 < z < 1, we have proved our statement. (Remark that the differenti-

1 nk
ability condition of ft F t(x ± a oPo )dt at zero was only one-sided

0
since a p > 0.)

Remark 1: .1 closer look at the above argument shows that in fact
1

we proved more: if O(X) = (1/2)fIj(t + x) - V(t - x)Idt, then
0
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*(X) is Frechet-differentiable at zero. Indeed, the proof of the lemma

shows that it is sufficient to consider X E B+(I,C) - provided
I1

f(VIr(u + X)+I + v[T(u + x)-])du converges to zero uniformly over the
0
unit ball, which is obvious whenever v is norm continuous at zero.

Similarly the bounded convergence theorem still permits the reduction

to the case where f(x) =I(q <. x). Also the approximation of

* by and later of ' by T are obviously uniform in rE 10,110.

Since, as we Just mentioned, the convergence of (!/T)!*(Tp) +

*(T(1 - p))] to 1 is uniform in p for v norm continuous at zero, it

will be sufficient to consider vectors p such that pi = 0 V i > k

indeed, the same conclusion will then hold when pi = 1 V i > k, so that

if k is chosen such that y. < c, then T such that,
i>k0

V T: T ! T, V p in one of these two classes,

1(I/T)*(Tp) - cyPi & e, the result will follow (from the monotonicity

of 7) for arbitrary p E [O,l] by sandwiching it between the tvo

approximations pi, Pi where pi = pi = Pi for i 4 k and for

i > k, p. = 0, Pi = 1. As shown in the proof, the differentiability of

over p's having only k non zero coordinates amounts to the

differentiability of a product of functions of 1 variable, which is true

as soon as each factor in the product is differentiable, what we proved.

Also we did not need in fact the symmetry of *. We thus obtain

finally:

Proposition 2: Let

1

H(X) = f (t + x)dt.
0
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Then H is Frechet differentiable at zero, with as derivative the value

of v:

100

f Y. (x)v. (")df(x)
00

where in the integration a discontinuity to the right (left) of x is

to be interpreted as the corresponding mass immediately to the right

(left) of x.

The i(x) are defined in the following way. Assume the g me
00

v is of the form v(s) = f(P(s)), where P = ai vi a i > 0, Vi > 0,
0

v.(I) = I, lai = 1, V non atomic and i ) I => v. two valued,

i * => v. v.. Define random variables Z independent and

uniformly distributed over [0,11, then expand each point z, tD some

open interval of length ai, Then shrink the remaining part of 10,1,

(of length I) to length ao  (proportionately). Denote by J; the random

interval thus obtained corresponding to Zi . Then yi(x) = P(x EJi )

-/

for i ) 1, and Y (x) = P(UJ. has density 0 at x)-
0 i

1x+6
'i.e. Yo(x) = P(limsup I (x)dx = 0)]

+0 x-6 Yi1

When there are infinitely many players, we also showed that the

Yi(x), (i = 0,1,...) are continuous on [O,11, with y o(O) = YO() = 1

if a > 0 - in particular, if ao > 0, the series Yi is uniformly

convergent (to 1) on [0,11, and anyway lyi(x) = 1 V x: 0 < x < 1.

In particular, when there are infinitely many players, the value
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of f(x) at a jump and the exact definition of the f...df(x) play no

role.

It is possible to draw still some sharper conclusions from the

foregoing: let v E FAI converge (in norm) to Vo E FAI . Let v.

n n(i ; 1) enumerate all atoms of all P and let v be the non atomic0

nn n n n npart of Pn with U = a nv + 7a v.. One sees immediately that an V
11

is norm convergent to aoo, and that (an)c= is I - convergent to

(a°)o 0 . Assume now u has infinitely many players. Since this
i i=O*

implies that when realizing the random ordering with the same set of

random variables Zi, we will have a.s. jnl + JO, and since yi(q) =

P(q e ) = P(q E ), it will follow that V i ) 1, yn(q n) + Y°(q)

whenever + q (0 < q < I). But Y(q) 4 Prob (q - an 4 W (Z-) 4q)

a i/ao, so that [ yn(q) 4 (1/an ) I an  if an > 0. Thus the £I
i)k ik i o

convergence of an  to a. implies that, if a° > 0,
1 1 0

lim sup sup I yn(q) = 0, i.e., the convergence of the series y i(q)
k- n q i~k i i;lI

is uniform in n and q. Since y'.o(%i), i follows that

n+ I yi(qo), and the relation y Ti 1 yields therefore
i0l 0il 0 iO

yo(q) + yo(q). If ao = 0, then yo = 0 and thereforen 0n o no
limninf y (qn) Y O(qo), so that the relations T> 0 i i =1 n

i=0
and lim inf , > To y i imply again n(qn) yo(qo)

n+W  i k

Let gn: (0,1) + FA: gk(q) = Tn(q)vn + .(q)v Since we0 0 i=l

have shown that vn is norm convergent to vO  (or yo = 0) and that
0 0 0

the Ti(q) are equicontinuous and converging to yO(q), it follows

that V k the gk form a sequence of continuous maps uniformly

convergent on every compact set. If gn g the relation

reato
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lim sup sup n y(q) = 0 yields then that also gfn is a sequence of
k-+ n q i)k1

continuous maps uniformly convergent on compact sets to g0.

Therefore, if fn converges to fo at every point of continuity
1 1

of fo, fgn(q)dfn(q) will converge to fg°(q)df°(q); we have shown
0 0

that:

Proposition 3: At every point where w has infinitely many

players, value (f()) - as a mapping from bv'([0,11) x FAI to FA -

is jointly continuous in f and P, when FA is endowed with the norm

topology and bv'(10,11) is endowed with the strongest locally convex

topology for which a sequence is convergent iff it nas uniformly bounded

variation and converges pointwise to the limit at every point of

continuity of this (i.e., an Arens-topoiogy, or bounded weak*-topology).

Remark 2 (Regular Eames): Let v be a monotonic simple game with

countably many players. Coalitions being points of {0,}0, v is a

{0,1}-valued monotonic function on {0,l} . Asswme first v to be

measurable for any product measure on {0,Il (in order for the

extension to be defined - this assumption has to be made explicitly:

indeed, using the continuum hypothesis, it is possible to construct

such v's such that the lower integral would be zero for the product of

any sequences pi with lim sup pi < 1 and the upper integral would be

1 whenever lim inf pi > 0: there is little hope to be able to define a

meaningful value for such things). We will also denote by v its

extension to i0,1] defined by letting v(pl,p 2 ,p3 ,...) be the

expectation of v under the corresponding product measure. We assume
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v to be continuous in the product topology in a uniform neighborhood of

the diagonal - to exclude such obviously non regular games as: v(S) - 1

iff lir inf [proportion of players belonging to S among the first n
n+ ft

players] ) 1/2. Such a game is called regular (or non-singular, or

proper) (cfr. Shapiro and Shapley [19'11, at least for weighted mjority

games) if I = 1, where Ni = P(i pivots).

Remark now that w = !P(i pivots arriving at t)dt =

1 0

f(av/api)(t,t,t,...)dt (this last formula because v is obviously
0
multilinear in any finite number of p's). The same multilinearity yields

therefore that, for any sequence (6i) with finitely many non zero terms,

1 = + TO V(t . i+ T1) - V(t .1)dt
lr f dt f lim vt.1. ))dt.1.T+O 0 0 T O

f fi6(3v )(t~t,...)dt =6.W,0 i i

Therefore for any nonnegative sequence 6. (0 ( 6. 4 1) if 6n

denotes the same sequence with all but the first n terms set to zero

we get

lim inf 1 * 1 + 16) - v(. dt > lim im . + 6n) - v(t dt

1+0 0 T n+= T 0

= lir = .~.
n-i 

I

By an argument we already made before this implies, when applied
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also to the sequence 1 - 6i , that, if w = 1, then

1 v(t . 1 + T6) - v(t.1) dt = ++ 6i
T00 T

i.e., v E Q with *(v) = (i)

Thus, if v is regular (i.e. Iwi-- 1), then v E Q. Conversely, if

v E Q, then *(v) is the limit of a sequence of continuous functions on

[-i,il , so is continuous at at least one point of this space, which

implies *(v) E 1 (this argument is essentially similar to an argument

we already made in "Values and Derivatives"): *(v) is some summable

sequence * i" Since by our above argument one has . = wi, and since

efficiency yields D$i = 1 we get si = I: a monotonic, simple game

with countably many players is in Q if and only if regular.

SECTION 2

In Section 1 we have shown how to reduce the problem of defining a

value to the problem of defining a positive, symmetric linear operator

(of norm 1) * to FA from a (closed, symmetric) space V of

functions v: B(I,C) + R that satisfy v(a + bx) = av(1) + bv(X)

Y a, b E R V x E B(I,C).

We have also seen that, for such functions v, one has

V(v)[x,x' Ix' - Xl • Ivi , Y x, X' E B(I,C)

Therefore, if we let D x) = v(x + AX) + v(X- XX)1/2, we get

xI
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v(D )[xx'i ' lx' - xl • lvi

and D' (c + dx) = cv(l) + d DIbA/dl(x) (in particular DA(1) v(1)).
a+bx X X

Let D (X) stand for lim D (X) (if this limit does not

necessarily exist, use any Banach limit; remark that D (X) is
x

necessariiy an even function of X). We get then

V(Dx )x ,X'! - RX' - X1 ° V9

and D a+bX(c + dx) = cv(l) + dD (x).

Thus, Y X, DX () is linear on every plane containing the

constants, and satisfies D (1) = v(1) and lID X 1 Nyu.

In addition, the mapping X + D is constant on every planex

containing the constants, and the mapping v + D is linear, positivex

and of norm

Dx(X) is the (two-sided) derivative of v at X in the

direction of x: lim (v(x + Tx) - v(x - TX))/2T.

T O
We think of the typical situation where D would already be in

x

FA for "almost every" X: for an average of the D then to be a
x

valie. onp only has to make sure to get the symmetry. the average

shoild be computed with a (finitely additive) probability distribution

of B(1,C) that is invariant under all automorphisms of (I,C) (or

of C).

The averaging should be well defined whenever v is a function of

a vector measure, so for any vector measure P = (i ... pn ) and for

any Borel set B in Rn, U-I(B) = {XI(x) E B} should be measurable:
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this class of sets in B(I,C) is the algebra of cylinder sets. Thus we

look for a "cylinder probability" on B(I,C), i.e., a finitely additive

measure P on the cylinder sets, such that, for any vector measure

= (ul ... n ) the induced measure p 0 P-1 is a (countably additive)

probability on the Borel sets of Rn.

Recall that any cylinder probability on B(I,C) is uniquely

characterized by its Fourier transform, a function on the dual defined

by

F(p) = E exp i<i,X>

In the next theorem we use the classical concept of invariance

(i.e., under all automorphisms of (I,C)); accordingly (I,C) is here

required to be a standard Borel space (i.e., isomorphic to 0,1l with

the Borel sets) and the duality used is that of B(I,C) with the

space NA non atomic, countably additive measures on (I,C).

Theorem 1: The extreme points of the set of invariant cylinder

probabilities on B(I,C) have Fourier transforms Fm(i) =
M,0

exp(imu(1) - oill) where m E R, a ) 0. More precisely, tne formula

E exp i<u,X> = f F C(P)dP(m,o) establishes a one to one
RxR m,

correspondence Between invariant cylinder measuresk / and (countably

additive) measures P over R x R • This corresnondence is a positive,

linear, convolution preserving isometry.

Proof: Consider first cylinder probabilities. Let Pi denote a

sequence of mutually singular non atomic probabilities. There exists a
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partition of (I,C) into a sequence of Borel sets Bit such that ui

is carried by Bi - which has therefore the power of the continuum.

Thus, for any permutation w of the integers, there exists an automor-

phism e of (I,C) such that 8n maps the sequence (uI)"I to the

sequence (uw(i) )=l.

The sequence pi maps B(I,C) to Ro, and the cylinder measure

induces therefore a consistent system of probabilities on the Borel sets
n

of the [ (R), and thus a (countably additive) probability Q on the
i=l -

Borel sets of R . The invariance of the cylinder measure under e

implies then the invariance of this probability under any permutation

IT: the coordinates of R are exchangeable under Q.

Thus, by de Finetti's theorem, if we denote by A the asymptotic

a-field on R , the random variables i are i.i.d. conditionally

to A, say with distribution F. The mapping from R to the set

M(R) of probabilities on R that maps any sequence to its distribution

(if this exists - which has Q-probability one by the Glivenko-Cantelli

and de Finetti theorems) is A-measurable, so Q induces a probability

P on M(R), such that Q is the distribution of a sequence F-l(xi)

where F is selected according to P and the xi are selected,

independently of F and of each other, uniformly on (0,1). It follows

in particular that any subsequence of the pi.'s would induce the same

probability P on M(R).

Let now Ui' be another such sequence; then there exists an

uncountable Borel set B in (I,C) which is negligible for all

p's and u' 's: one can construct on B a third such sequence Pi..



When the pi's and the u is are arranged in sequence, they fuifiil

the requirements set out at the start of the proof, so the probabi.ity

P on M(R) induced by the two sabsequences p i and 0i is lne

same. The same would apply to the two sequences W and i, so it
i

follows that P is independent of the particular sequence p i zhosen,

but depends only on the cylinder measure.

n
Since in = (1/n) i is such that the sequence (nni,...)

satisfies our requirements, and has the same asymptotic a-field

as the original sequence, it follows that, for P-almost every F,

P are independently F-distributed and n = (1/n) ' . is
i~n

also F distributed. Thus P-almost every F is such that, for all n,

the average of n independent F-distributed random variables is F-

distributed, i.e., F is strictly stable of index 1. For

random variables, tais is equivalent to say F is a Cauchy distri-

bution.

If we parameterize the Cauchy distribution oy their location and

scale parameters m and a, P becomes a probability distribuL-on on

R x R+ such that, for any sequence p i of ;a,.taily singular non atomic

measures, the sequence pi.(X) is distributed as the average under

P(dm,do) of the distribution of (Ii+ Xi - Yi) where
1 2. 1 i=l'

the Xi and Y, are all independently distributed as m + aU, where

U is a standard Cauchy random variable.

Thus IPi • X* - lIfi • Yi is distributed like m * i(1) +
Si i 3.

o • iiI • Ui, where Ui is a standard Cauchy random variable.

In particular, E[exp (i<v,X>)jm,oj = exp [-olil + im<p,l>)
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V 0 E NA, and E exp (i<p,X>) = f exp[-clul + im<U,l>JdP(m,O).
R+R

IT is clear from the above Proof - or from the last formula and

the uniqueness theorems for Fourier and Laplace transforms - that for

any cylinder measure there can exist only one P such that the above

formula holds.

Let us now show that for any such P there exists a (unique)

cylinder measure with that Fourier transform.

Uniqueness follows immediately from the fact that distributions

over finite dimensional spaces are uniquely characterized by 1,ieir

Fourier transform, and from the fact that zylinder sets are all finite

dimensional sets. _o show existence, recall that Bochner's Lheoreu

characterizes the characteristic functions on Rn as the posirive

definite functions * that are continuous at zero witn *(0) = 1. This

immediately extends itself to Fourier transforms of cylinder probabi-

lities (when continuity at zero is interpreted as continuity at zero of

the restrictions to all finite dimensional subspaces of the dual).

Indeed every inequality for positive definiteness involves only

finitely many points in the dual, so the condition is still necessary,

and IP it holds, we get by Bochner's theorem a consistent system of

probability distributions on all finite dimensional quotient spaces of

B(I,C), i.e., a cylinder probability.

Now our formula obviously has value 1 at zero, and is continuous

there by the dominated convergence theorem. Thus we only have to show

that it is positive definite. For this it is sufficient to show that

for every (m,o) the function exp(-oHuE + im<u,l>) is positive

definite, the inequalities being linear.
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TG show this, it is sufficient to show that Lhis function is tie

poiniwise limit of a set of positive definite functions * . stnce zho

inequalities each involve only a finite number of points in the dual and

are weak inequalities.

For every Bore! partition a = (B1 ... Ba) 0 f (

X, (w) ... X (w) be independent Cauchy random variables wi'hn

par meter3 m and a, and let f(w) E B(I,C) have value ,I:() on

Ba: f(h) is a random variable with values in (a finite dimensional

subspace of) B(I,C), thus by Bochner's theorem its characteristic

function * a will be positive definite. We have @p(j) =
n

E exp (i<uX>) = E exp (i<U.f(w)>) = F exp i i(Bc)X.(w).
n

Now I i(B)X,(w) is Cauchy with parameters mZu(B') and

i.e., m - <p,l> and oIlII, where U0 is the nor o' the

restriction of ti to the 'a-field generated by the) partit-on a.

Thus haCU) = exD[-I1U + im<P,l>! is positive definite, and
a

obviously Ppllx + IPPl when a ranges over the increasing net of alla

partitions.

This proves that * is positive definiLe, and thereb; esZ, i.shes

the one to one character of this correspondence, when restr~ctea to

probabilities on both sides. (Obviously the cylinder probability has to

be invariant, since its Fourier transform is so.)

It is now clear that, for any bounded measure P, there exists a

corresponding invariant cylinder measure: let P = aP - 8P, where

P1 and P. are two probabilities, a ) , ), 0, and use aQ1 - OQ, as

invariant cylinder measure, where Qi is the cylinder probabLlity
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corresponding to Pi" Furthermore this cylinder measure is unique - if

there were two of them, their difference would be a cylinder measure

with zero Fourier transform, so the positive and negative parts of this

difference would be two different positive cylinder measures with the

same Fourier transform, and in particular with the same total mass

(value of the Fourier transform at zero), so that by normalizing one

would obtain two different cylinder probabilities with the same Fourier

transform, in contradiction with what we have seen above.

We have just used the fact that the positive part X+ of a

(bounded) cylinder measure X is still a cylinder measure. Indeed,

if A denotes the algebra of cylinder sets, i is defined by

-+(A) = sup X(A n B) V A E A. One sees immediately that X+ is

finitely additive, positive and bounded on /, with X+ > X. To show

that A+  is still a cylinder measure, let A0 = {-l(B);B Borel set in

Rn} for 0 ranging over all finite subsets [0 "' n ) of NA.1 n

Then X+ = sup X+, with X (A) = sup X(A n B). It is thus sufficient
DBe, 0

to show that, Y 0 , V 0: 0 ) 0o x is countably additive on A0  -
oo

(the supremum of a bounded, increasing net of countably additive

measures is still) or that, Y 0 A + is countably additive on A.: this

is the Hahn decomposition theorem for countably additive measures.

Obviously, if further A was invariant, X+ will also be:

therefore, we can, in the same way as above for P, construct for any

invariant cylinder measure X a corresponding measure P on

R x R . Again, this P is unique, otherwise one could construct, as

above, two different probabilities P1 and P2 with the same value of

f
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the integral fFma (W)dP(m,a), contradicting our previous result for

probabilities.

Thus the bijectivity of the correspondence is established. Its

positivity was already established before, when dealing wLtn

probabilities, and its linearity is now immediately obvious from t;he

bijectivity - an integral is a iinear function of the anderly>,g

measures. Being positive and linear, it is an isometry because it ,raps

both ways probabilities to probabilities.

The assertion about extreme points is now immediate, so there onlj

remains to establish the preservation of convolution.

Since a linear mapping from RPn to Rk maps the convlut-on o'

two measures to the convolution of their images, it is clear th rt tne

convolution o:' two cylinder measures is a well definea cyli: < measure,

with the Fourier transform o: tne ionvolutIon being the product of the

Fourier transforms of the ".,vidu: measires. in particular, Lrti2

two measures were invarian:. tne convc',tion wilL stili be. :,>ar4

one checks immediately that intogr[il in tne right hand si.einder

the convolution o" two mnea.,res P. and P is the product of the

corresponding integrals. nss hnisnes the proof.

Denote by Q the closed, symmetric space generated by FA and

all functions v satisfying v(a + bX) = av(l) + bv(x), Nl < - that

are of the form v(x) = f(u(X)), where i is a vector measure in NA.

Theorem 2: Let v E Q, and let P be any invariant cylinder

measure of total mass I on B(I,C) which is nondegenerate, i.e., the
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subspace of constant functions has probability zero, or: Prob (a = 0) = 0.
Then D X() exists, for every X, for P-almost every X (i.e., the

difference sup DA(X) - inf O(x-) converges to zero in L (dP(X))
W X~ W A-

when A + ") and is, as wely as any D (X) P-integrable in0 X

x, and v(X) = JD×(x)dP(x) = lim fDA(x)dP(x) is independent of the

particular invariant P chosen.

Further *v E FA, so that the mapping v + *v is positive,

linear, symmetric, of norm 1, and satisfying v(1) = v(W): *: v + v

is a value on Q.

Proof: Since the mapping v + DX is positive, linear, of norm 1
X

and satisfies D (1) = v(l), the last sentence of the statement will

follow from the others provided we prove the additivity of *v"

It also follows that it is sufficient to prove the statement on

the generators of the space, since a uniform limit of P-integrable

functions is P-integrable, with the integral being continuous along the

sequence.

Finally, since DX acts as the identity on FA, and sinceX

constant functions are P-integrable, it is sufficient to consider the

generators of the form v = f(p), with i = (p1 "'" pn) a vector

meas'ar- in NA.

Also, since, by Theorem 1, P can be written as aPl - OP 21 where

the Pi are invariant cylinder probabilities and a - = 1, it is

sufficient to consider the case where P is a cylinder probability.

There is no loss in assuming that p has full dimensional range -

otherwise one of the components of P is a linear combination of the

-- I
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others, so v can be written only as a function of the other

components.

Denote by B the image under M of the unit ball of B(I,C),

i.e., B = 2(Range of p) - o(l). B being compact, convex, symmetric

around zero, and full dimensional, it is a neighborhood of zero (by the

absorption theorem say). The relation v(a + bX) = av(1) + bv(X)

implies now f(a -e + bx) = af(e) + bf(x), y x E Rn, a, bE B, where

e = R(i) ERn.

Finally, the relation V(v)[X,X'] 4 HX' - XI 0 110 implies that,

if x = i(X), and y - x E 6B , then -X with Ix - XI 4 6 and y =P( )

so that

jf(y) - f(x)I = Iv(i) - v(x)I 4 ,v() - v(x - 6 + Iv(x) - v(x - 6 .

V(v)[x -6 . l• X + 6 . 1] + V(v)lx - 6 . 1,xl 36Hv11

B being a neighborhood of zero, 9 e > 0: OxII e => x E B and thus

we have shown that Hy - xi 6 => if(y) - f(x)Ij 3611v for all 6,

y and x: thus If(y) - f(x)j 4 (31v)/c 0 Iy - xP: f is Lipschitz.

Conversely if f is Lipschitz it follows immediately that

Nv < -, so our assumptions reduce simply to v = f(U), where U is a

vector in NA with full n-dimensional range and where f is Lipschitz

n
satisfying f(a • e + bx) = af(e) + bf(x) where e = x(), xE R

V a, b E R.

We have D (x) = Ef(x + Ay) + f(x - ky)1/2, where x = j(X),

y = u(x) or DT (x) = [f(y + Tx) - f(y- x)]/(2T).
x

Remark that, f being Lipschitz, the limit (for T + 0) will, for



each x, exist A-almost everywhere in y, A being Lebesgue measure.

This follows from Lebesgue's a.e. differentiability theorem. Indeed,

if x is zero, there is nothing to prove, otherwise x can be taken as

the first basis vector in Rn: for any z2 ... zn, f(z,z 2 ... zn ) is a

Lipschitz function of z, so the first partial derivative exists for

almost z, by Lebesgue's theorem. Since f is Lipschitz on Rn, the

set of points where the first partial derivative does not exist is a

Borel set, and therefore this set of points has Lebesgue measure zero by

Fubini's theorem.

The probability induced by P on Rn has characteristic function

(t) = E exp i<t,x> = E exp i<t,IJ(X)> = E exp i(<t,u>(X)) f expj-1<t,P>1
RxR

+ im(<t,u>(l))]dP(m,O) for some probability P.

Now 11<t,u> = sup <t,U(X)> = sup <t,x> - N (t) where N is
Itxfll xEB P 11

the norm on the dual generated by the ball B

And <t,p>(l) = <t,e>. Thus

*f(t) = I exp[-N U(t) + im<t,e>]dP(m,G)
RxR

Now obviously, for any given m and a (>0), expi-oN (t) +

im<t,e>] is Lebesgue integrable in t, so the corresponding probability

distribution has, by the Fourier inversion theorem, a density with

respect to Lebesgue measure. Since the conditional distribution on

Rn given m and o is absolutely continuous, the unconditional

distribution is also certainly so.

Thus we may conclude that, for any invariant P, and for any
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X, the limit D(x ) will exist for P-almost every x.

Thus, for any P, and any x, If(y + Tx) - f(y - Tx)]/(2T) is

uniformly bounded (f being Lipschitz) and converges P- a.e. to its

limit: by the dominated convergence theorem, the limit is P-integrable

and the limit of the integrals is the integral of the limit function

x (y).

Now f(a • e + by) = af(e) + bf(y) yields * (a * e + by) =
x

lim[f(x + A(a , e + b y)) + f(x - )(a - e + b • y))112 =

lim [f(x + Xby) + f(x - Aby)1/2 = ix(y) if b * 0 (and =f(x)
A -OM x

if b = 0).

Let Z denote a random variable having characteristic function

exp [-N (t)). Then m - e + oZ where (m,o) is selected, indepen-

dently of Z, according to P(m,o), has the correct characteristic

function I exp 1-aN (t) + im<t,e>jdP(m,a). Thus Jvx(y)dPky) =
RxR

E[4x(m - e + OZ)I = E* (Z) since P(o = )= 0: the integral of the
x

limit - which is the limit of the integrals - does not depend on the

choice of P, i.e. on the choice of a particular invariant cylinder

probability.

There only remains to establish the additivity, i.e., that

E M(Z) is a linear function of x.

Let fC (x) = f(x) exp(-cIxI2 ) (c > 0) (here 11 is the

Euclidean norm).

We want to show that fC are uniformly Lipschitz (i.e., with a

Lipschitz constant independent of c).
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Since f is Lipschitz, each of them is obviously locally

Lipschitz, so by the above mentioned theorem of Lebesgue, it will be

sufficient to show that the directional derivatives of the f. are

uniformly bounded whenever they exist.

By choosing appropriate axes, we can assume our directional

derivative is in the direction of the x, axis.

We have

a af

C af 2 2(-) exp[-Oxl I - 2Cx1f expt-clxf I

If K is the Lipschitz constant of f, then Iaf/axlj < K and

(f' < K 'lxq - bounding also Ix l by QxR, we get

af'

'S ~2 ~ KElI 2  2K exp,-CHxq I + 2K()lxl ) expl-(CflxI2)] 4 2K

since e + 2ze - Z 4 2

Thus the f C have uniformly the Lipschitz constant 2K. Further

the formuli shows that, whenever the directional derivative of f

exLsts, the corresponding directional derivatives of the f will also

exist AnJ converge to that of f when c + 0.

?hus :i(y) = 'AM liM (I- (y + Tx) - f (y - Tx))/(2T), all
C 0 r 0

functions [nvolved being 4 2Klx1 in absolute value. Thus, by the

dominat-, convergence theorem,

E4 (Z) = lim lim-L -Bfr(z + Tx) - f (z - Tx))g (z)dzx .2 C



where g is the density of Z (which we have already shown to exist).

But since f is a bounded function, it is integrable, so

firC(z + Tc) - fC(z - Tx)Ig (z)dz = ffC(z)g (z - Tx)dz - f:" (z)g (z +x)dZ

= IfCWz[g 1(z - TX) - g (z + TX)Idz

Now g has characteristic function expf-N ( )] , and

ItR exp[-N (t)] is integrable for Lebesgue measure. Therefore, by the

Riemann-Lebesgue theorem, g is continuously differentiable with its

gradient going to zero at infinity. In particular the [g (z - TX) -

g (z + Tx)l/2T are uniformly bounded and converge pointwise to
<-(Vg )(z),x)>, where (Vg )(z) is the gradient of gW at z.

Since fC (z) is integrable, it follows (dominated conv-?r~ence)

that lim (i/2T)ff (z)[g P(z - TX) - g (z + Tx)ldz = If (z) <-(VgP)(z),x>dz
T O

and thus

E'x(Z) = lim fe- Uzfl-f(z)<-(Vg )(z),x>dz
c O

= -<xIim fe- IIzI 2f(z)(Vg )(z)dz>
E+O

which is linear in x (the limit being some form of Cauchy principal

value of ff(z)(Vg1 )(z)dz).

This finishes the proof. Q.E.D.

Remarks:

1) One can use the same formula (exp 1-101) to define the

Fourier transform on the whole of FA, thereby defining a cylinder

...................... ,"-
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probability on B(IC) when cylinder sets are defined as inverse images

of Borel sets by any vector (i ... W ) in FA. This cylinder
1 n

probability would obviously be invariant under all automorphisms of the

lattice C.

Theorem 2 remains then valid when v in the definition of Q is

allowed to be any vector in FA - provided one interprets "invariant

P" as "0 naving the Fourier transform prescibed by Theorem 1."

It mighxt be that this formula could be justified by some type of

uniqueness argument on the space of non atomic elements of FA - using

maybe a weaker concept of automorphism. But certainly for the atomic

part no csuch argument could be hoped for.

However, as our analysis of regular games with countably many

players at the end of Section 1 may indicate, it could be that in

general the "atomic part of the game" is already essentially linearized

by the first derivative operation, so that the end result would anyway

be canonical. This certainly deserves further study.

2) Define for any vector measure u, N (t) as sup <t,x> = <t,u>E =

xEB

fj<t,x>'dv(x), where v is the distribution, urier a coz:n-.o do:inatin-

neasure u , of the Radon Nikodym derivatives f = (f ... f ) ofi o 1 n

(p ... * ) w.r.. o . For any norm n, one could replace f

by f' = f/n(f), and di0  by d' = n(f)d °  to normalize v on the
0 0 0

n-unit sphere-, say, for a canonical choice, v could be carried by the

boundary of B

Our proof then shows that, in this case, exp(-N (t)I is positive

definite. Conversely however, if the support function N (t) = sup <t,x>

L B
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of some compact, convex, symmetric set B is such that exp[-N (t)1

is positive definite, then, since N is positively homogeneous of

degree one, exp[-N (t)] is the characteristic function of a strictly

stable distribution of index one, and has therefore as classical Levy

representation expI-fj<t,x>jdv(x)l, where V is tne normalizitloz, of

the Levy measure of the process on some sphere - say on tne boandary of

B : there exists a positive measure v on the boundary of B sach

that N (t) = fi<t,x>Idv(x). If now we define P by dpi = x uv,

where xi  is the itn coordinate mapping, we get immediately

N (t) = <t,u>I: B is indeed the ball corresponding to the vector

measure P.

This interpretation in terms of the Levy measure allows us

therefore to view the random perturbation around t~li diagonal as the sum

of a very large number of independent contributions - those of Lnr-

players preceding the given player in 4 random order - tne airecLton of

each being according to the distribution of Radon Niodym derivatives of

the given measure. This type of interpretation will be pursuea much

further in a subsequent paper.

3) A large number of definitions of "spaces on which there is a

value" are possible in view of what precedes - depending among others on

the exact order in which the various limiting operations and averaging

operations are to be done, on how much "a.e." is put into the defini-

tions, etc.

We prefer to leave this matter to the taste of the reader, as long

as no theorems are available that would show clearly which option is to be
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preferred. For a foretaste, the reader may want to look at Section h.

SECTION 3

In many applications of the above results, whether to majority

games with several houses or to n-handed glove markets for instance,

the function v of Section 2 will be of the form f(U1 ... P ), where

P is a vector measure and f is piecewise linear. Elementary trans-

formations reduce this to the case where u is a full dimensional

vector of probability measures. Say fi (i = I ... k) are the

different linear functions appearing as pieces of f (i * j => fi * f

Then the set {xjfi(x) = f.(x)} being of lower dimension, has zero

probability under the invariant measure of the last section (since this

is absolutely continuous with respect to Lebesgue measure), so that we

can neglect ties among the f.'s. Then, for any order v on the

indexes 1 ... k, the set {x! V i,1, i < = fi(x) < :,(x)} = C( ) is

an open convex cone - thus connected - where, by continuity, f is

constantly equal to one of the f 's - say fi( )"

Thus, by the results of Section 2, the value of this game takes

the form PIC()f i(i)().

So, to compute the value of such games, we have to compute the

probability that fi (u(X)) < fi2 ((X)) < ... < fik(-(X)) or, letting
12

*. stand for the measure f i (p), the probability that *l < $2 < ... < 2k9

when 0 is some vector measure. Remark also that the property

f(t - 1 + a - x) = tf(l) + af(x) implies that, for all i needed to
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represent f (i.e., f = fi on some open set), one has not only fi

linear and not merely affine, so the 0, are indeed measures, bit also

f. (i) = f(1), so they also have the same total mass.

Thus, letting vi = Pi+I - *i, we have a vector measure with total

mass zero, and we have to compute the probability that v(X) f'aiLs in

the positive orthant.

If the v's are not linearly independent, those inequa-it-es1

determine a convex polyhedral cone in tle space generated by v. Thi6

cone can be written as a finite union of convex simplicial cones

(neglecting boundaries that have probability zero), and for each convex

: -nia" cone one can take its extreme rays as new coordinaLe axes,

Thus reverting to the case where the v. 's are linearly inadepenent.

This is Lhe probabiLity we are going to compute in this uze;Lon:

v = (v ... v ) is a ful' dimensional vector measure with total mass1 n

zero, and we want P(v(X) E Rn).

Obviously, This probability does not depend on the particuLar

invariant measure chosen, so we will us, m 0, 0 = 1.

Let us first recall thit for any norm on R n , any point

x C Rn can be written in polar coordinates r = N(x) and s = x/r, and

that Lebesgue measure dx dx = rndr do(s), by definition of the
1n

surface measure do on the unit N-sphere. One gets the following

"change of variables" formula: if T is any other such surface measure

(i.e., originating from some other norm), then for any positive

meas-irable function r on the unit N-sphere,

s ] dr(a)ff(s)dc(s) = ff L NC 7] n()
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From now on we denote shortly by N the support function N of B •

We observed in Section 2 that the characteristic function

exp!-N(t)] is integrable, so the Fourier inversion formula holds. Thus

P P(v (x) E R )

- 1 fjdx. ... dxfjexp(-N(y))jMexp(-i<y,x>)]dy I ... dy
( R ~+ n

n

or, going to polar coordinates

P = (2l -nf+(dx1 ... dx )f exp[-r(l + i<s,x>)]rn-!dr do(s)
R

n

k ___ f 1 ..(dxn do(s)

( 27r)n x ) >0 [I + i<s,X>]
n

The inner integral being a density, it is positive, so we get from the

monotone convergence theorem

P " lim f dx ... dx f do(s)

(27 )n M_ O 4'M n + i<s,x>l n

Now i/(,1 + i<s,x> n ) is bounded (its absolute value being 4 I)

and thus intgrable on the product of any cube in x and the unit N-sphere.

Using thus Fubini's theorem, we get

dx1 ... dx
P (n - 1 lim Jda(s) f 1 n

(2 w )n  M __ n Oxi <M [1 + <sx> n

n

(Re(,,) = 1): on depends only on the first n coordinates of the sequence
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si . An elementary integration over xn  yields

6

n(cs) = [ (-i) nn-l [c + i6ns nM,s"6 n G0' D

and this formula stiiL holds for n = 1 if one sets *o(c) = -Xn c.

One gets now immediately by induction that

On(c 's) 6 C ) (-1) k£n(c+ iM6's)

and thus

P lin ft L (-s' 2+ s)

M_ 6EO ,} n  j s.

Since da(s) is sylnnetri, around zero, we can replace eac.

- Zn(I + iM"6.s.)

.n Rs.

y the average of its valie at s and at (-s), i.e., by its r -,q" art. We

get thus

P = jm-"---j F (MV5 .) ) -(27 )n M_ 6C-[0~, ? n(6s TIs

where

F Cx) -+ 2 ) A t'i'(x

F (x)  = -- 1£n(1 + x
2), - ctaI(x) I i + x 2(x)

according as to k = 0, 1, 2 or 3 mod 4

Here Arctan(x) venr.te. in ,c tver,;e t:,, tan -ent functio t
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values in (- w/2,w/2).

Using now the change of variables formula, we can rewrite this as

P lir f[ 1 (-1) 6 Fn(M- 6js j)] dr(s)

(2w)n M 0 6e{0,il} n s

where T denotes the surface measure corresponding to an arbitrary norm

I I. Henceforth we will use IWxII = Yjxij. For this norm, the unit sphere

has 2n  faces, each with T-area equal to 1/(n - 1)!.

Lesting A = {ss ) 0, s. = 1} we get, folding all faces back onn

A ,
n

P = (2i - n lir f (-l) I (fl )F _ -- £ )1 dt(s)

M A 6E{0,1 }n ' Sn nEI 7N S

The nex'. Dart of the co;ptation is for n even.

Let ¢ 6 (M,s) = (./2) £ ,}nflj£n~i + j(M/(N(e • s))[6.£.s ]2 )

"]aim I :

6 (,,s)
sup fs is locally integrable on {s E An: 16;s. > 01IT n

M

(i.e., any point - and thus also any compact subset - of this set has a

neighborhood on which the function is integrable).

Proof: Fix one such point so, and consider first a neighborhood

V of s where all strict inequalities among the functionss o

{0; s,...s n; (16 EsE ) } that hold at so  are preserved. Let

n > 0 be strictly smaller than the absolute value at s of any of

those functions that does not vanish at so, and assume further that, on
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V all functions that vanish at so  remain <n in absolute valse,S
0

while all the other functions remain >n in absolute value. FinalLy

write V as the finite union of sets V (and a null set) where on

each set V the orlering oi' all those functions is constant (and

strict). it is sufficien to prove integrabi ity on V As.;.a rn

S
particular without loss or' generaltt irt, or, V. we nadv=

o
0 < sI  < S,- < ... < s < ni < s i < "" <  n (0 < n). 3y assa ....

tion j> 6 = 1. We nave

i + .+

(2 )Cn . -f-61 sI + - 7T.s7
• 6 =~~ ~~ c (s..n~ { i  .. .. .

2+ -n 2 . n

and we will bound individually of every logarithm in this sumn. .et

f.(s) = -(-l)i61s. + V 6s 12S2, n.(s) = N(-(-)l .s.

(i = 1,2). Now iniL + Mfi/n) + (%-,/n) 2 increases

monotonically with M to its limit, so that

- + 'MfI In kr2f If Zn(n,/r)

sup X -- n -- 1- nf2' - /
M ' i + [f, 2 s s

Thus we only have to show that (Lnlfl/ 2)/s and (In(n In ))/fls.

are integrable on Vs .

For the second term, remark that, N being a norm, and any t,;,

norms on Rn beir.g equivalent, n1  and n2  are bounded away 'rom 0

and from -, and In, - n2 l ' N(2s1 ,O,O,...) < Ks. ,So lin n/n, .

K's - thus we only have to show the integrability of sl/Hs , on

11
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{s C n L, s.1 ; s.}

The measure T on A nhas a bounded density w.r.t. ds 1.. dsn-l,
n 1 n-l 1

so it is sufficient to prove that fds 1 I (dsi, i.s-.,

1 n-2 0 i=2 s1
fi jn s I ds < -, which is well known.
0

The term (ZnlfI/f2 1)/Ts j  appears only if 6 = 1 so assume

this. Let 0(s) ) 6.c s.: since f, = + s1 , f 2 si we can

repeat wi.h f and f2 tne same argument as with nI and n2  if

0 does no- vanish at so . So assume furthermore D(so) 0
ID 0

6 -.s 0. Since by assumntion \] 6 s. > 0, it follows that there
j>k .j>k
exist two indexes >k, say n - 1 and n (renumbering coordinates).

such that 6 =6 =1,, =-1,E -I.

n-i n n-'- n

Do now the change of zoordinates (s .... sn ) +

(I 2')f2s Sn2 using the formulas for fl and f2  ani

the equation s. = L. Since under our assumptions the change of
U

coordinates has nonzero determinant, it will be sufficient to prove
n-2

integrabi.liy of 1 !12 /1(f - f) II s on 1. s > - f > 0
rflf1 ~2 i i 2,2

Integrating the s's. this becomes

in3
(I II.n~f f f' 3 fdf on f < f or

- " 1 2 'l 2f 1~ O~

equivalently on ;fij 1

Letting x. = 1f. , we get, bounding the integrand,

x ( nx I/x 2 - n-3 d nOx
x- P x jnjxl x 211 dxI d×2 on 0 < xi

2



or, by symmetry around x, = x21

f Ink2 /xI) [-Zn(x 2 - )k dx1 dx2 < , k ;1 0)
0 x41Xlx/2 x 1 21

1 2

- or, using polar coordinates and increasing slightly the area o.

integration,

-in tang

f -In sinI [-in r - In(cosO - sinO); k dr dO

oe64/4

1 k
since fi-xnr - A] dr is a polynomial in A, we have reducea the

0
problem to showing the finiteness of

ZXn cose - in sine

Ie/h cos6 - sin6 [-In(cos6 - sinGij dG ,

It is sufficient to show local integrability at D and 7/4, t-,e ratio

being bounded at 7/4, it amounts at this point to the well &nown

integrability of I£n xIn near zero; and at 6 = 0, the argument is

just as easy, and reduces to the integrability of lin x1 :c.u' zerc.

This proves the claim. Q.E.D.

Using now Lebesgue's dominated convergence theorem, we get for any

n> 0

lim J *6(Ms) 
lim *6(Ms)

M- A n{stJ6isT)} "si dt(s) = n d.,s)us.n 1 1n {16isi) n} 1

and
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urn M s= X (fl)XnV16,Eysj- (fl )in N(e s)

if 93J: 6 0, the first sum is zero, so

lirn4 *(m's) = 1(6 = (i1i,..,i)) j flc.)L

EE-'~ ( fe )Ltn N(E . 5)

We have also seen in the above proof that both (1/tUs,)7(fs )Injjc sI

and (~fs~f~ )In N(c s) are integrable over A , (for 6

6.s. =I> 'J everywhere); so for 6 0 ,

J1E t11

f4m ( dT)S) 1(6 (, ) )fl~ Ic dT(S

n n

fe --s dT(s)

n

+ lrn li rnS(ms dT(S)

n0O M- AflNS!6 s <n~}

Therefore, suming over all nonzero V's,

I(fls )Ln<.SjI

p(v. > 0 V i) ( ~l2wr~l f 11---- 1ts

J(ni )tn N(c s)

-f -I dT(S)

- (-1) i i f *6(M,5)
6E{0, ,n n+0 M- ' n~{s11 I~6si~n UIs ~)
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Let us now compute the last limit.

Assume without loss of generality 6 = 1 iff j 4 k: we want toJ

compute

J(fE.)£n l + (M( s E*s )IN( ° s))

lim lim f J£k dt(s)

n+O M- s>O s
M si=l

i~n

Represent s G A as ax + (1 - a)y, with x E Ak' y E Ank a E 10,""n

Denote by T the uniform distribution on A : we have T = /(n -
n n n

as noted earlier.

One checks easily that, under n , a, x and y are independent,

x and y being uniform and a having the beta-density

(n - 1)! ak-l( 1 )n-k-1

(k - l)1(n - k-) 1 -1•

Thus we get

di _(Y) dik(X) nlim lim n - k '_ -'

nf+O M-_ a Ae
n-k k

Ln[l + (Ma(le xj)/N(a(e • x) + (i - a)(c • y))) 2 ]
(l-a) da

ak(l _ k)n-kix ny

k(Y) dT (x) n
- r lim f n-k-k fy f J(0
n4OM AK [J A xj 0 e

n-k k

+ (I - -- ly)) a(l - a)

IL
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We first want to show that:

Claim 2: The limit (when n + 0) is not affected if we replace

N(a(e - x) + (i - a)(E * y)) by N(C • y), and da/c(l - a) by da/a.

A) First replacement

Indeed, as before we get from the equivalence of norms on Rn that

11n N(a(e x) + (li - a)(C . ~ Kat

Since sup utn((l + An )/(I + An2 ) = Ln(n /n )1, we get that, after
A>O

the first replacement, the error in the sum [ is bounded by

K * a for some K > 0.

For the same reason, pairing the terms where, for j > k, E is +1J

and -1, one finds that, both before and after replacement, the sum

is bounded in absolute value by K* y' and for j < k, one finds the

bound

Kx + K'x

Thus, to show that we commit a negligible error in this first

replacement when n + 0, we have to show that

i T Cx) eJ k )M dTm(y)
f f - f) Min[a(x + 1 n : ( =] y
Ak0 AM  x J=l YJ

k J+
where, for any C E {-l,l1 , (E ) C for i J, = +1 for i = J

and (cJ-)i = i for i * J, - -1 for i =and i
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Let us first bound the inner integral

f i('Ym dT(y) 4 m f Min(O Max y , Y M Ty

A Mn J= l  .yj j Y 'i tI -

m dy.
Sm f Min(8 Max y,, (yJri) r

2(mm dy,

= m ( - 1) Y M1[8ymYI m
O Yl~~ 1y y~ Y,

= m2 (m - 1) f jtn(-m)] m-2 Min(yI'YI y) dy1 dy
OY 1 ym 1 

kI

2 1
= M2(m - I)f dy f [in ul Min[B,u-l, du

0 1

Now the inner integral is

for y 8 equal to Of [in u' du + fJn ul - 2

1 -8

y-l

and for y 8 tO [n m-2 du

1

Therefore our upper bound equals

B-1m 2 (m- 1)[82 f In ulm-2 du + fI(O 4 y 4 u- 1 4 )(n ulm-2 dy _u

1 u
1

+ 81I(B 4 y u-1 ( 1)[n ulm - 2 du dyl
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8-1 S -1

= m2(m- 1)[8 2 f [in ula - 2 du + flin v-l]M - 2 dv + Of u-1  n uim -2 du
1 0 1

821- 2 f £nulm -2 du

1

M 2(m - l)[f(-£n v)m -2 dv + -- (-n )m-l]
0m-1

2 8-Pn v)rn dv

0

by intergration by parts. The same integration by parts gives by

induction that this last integral equals

m-1 (_Xn i

(n - 1)! 8 I i!

i=O

Therefore, since we are only interested in values of 8 e-M < 1, we

get

I Min(0,(y )In i) d K Oltn O m - 1
=1 ly m

Let F o(8) = 8ln 81m: we thus have to prove that

-°
dT X) e -M )kJ+].dk<

f x f  F m in[(xJ + tn ) = - =I L"

To evaluate the inner integral, let for short y = x +

In !(cj+ - x)/(Cj • x) I then the inner integral is bounded by
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-m
e

Min f Fm(Min(ay j )) dJ 0 rn-i ) O

Fm 1  being increasing in [O,e-ml. Call this last integral p(y.); we

get letting p = Min(y,e-m )

P 
1

*(y) = f(Itn x m- ) dx - FM1 (P)(tn p + m)
0

K FM1 (P) - (4n p + m)FM1 (p)

K' F (p)
mm

(using our previous bound for the integral)

Thus it will be sufficient to show that, letting (y) = F_(Miny,e-M))

A k (Xl fx i}  I 1

Since u ) 0, v ) 0 implies *(u + v) 4 *(u) + *(v), it will be

sufficient to show separately that

f tn lJirm dT(X)
x n X.

X1 Xi i>l I

and that

II

The 
n I: _+ x dt(x) < axx___an

Xl I  "x x 1.

The first integral is bounded by - letting HxIN Maxjxij , and

' being Lebesgue measure on {xllxi= I} -
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! I [k.,tx,~ d1,,, , (k - i) I [in 2 d-- '(])

kx1MdT(x) k2 dT' (x)

x14xi i>l 1 x x X2

kx2 m dxi
=ck I [InT ] dx1  n -

0X 1x liX2=1 1 i>2 i

1 m k-2
=C~ f(En -) (In L-) dx <Co

0 1 1

For the second integral, we will prove local integrability, i.e.,

that, for any x E A, f {x x I there is a neighborhood of x in

this set where the function is integrable.

If x1 > 0. then xi > 0 Y i so that the integrand is locally
J!+ 1!-

bounded. Otherwise, one has C . x = E x = E x: if E • x * 0,

then locally £n!(9 * •X) x)i < Kx,, so 4 & K'*(x ), and we

have Just shown this bound to be integrable.

Thus there just remains to consider the case where £ • x =

x = 0.

Since xI = 0, jxi 
= 1, there exists an index j * 1 with

x) l/k, and since further E • x = 0, there exists another index

-2' 1 with x,, 0 k - 2  and c cs = -1. Assume without loss of

generality that J' = k - 1, j = k, and make the change of variables

(x I  ... xk )  + (f l f2 x 2 .. X k 2

using the equations

Cl+ . x =fl C 1- , x = f 2 xi = 1•
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The integrability on (*/Iixi)dT(X) is equivalent to thaL of

,/( ~I xi), which is equivalent to that of
i<k-l

*(jnjfl/If 211) k-2 dx.

f --f-T-df 1df 21

i 2 i=2 i

over fjfij 4 1/2, 0 4 f - , < x ii - or, integrating over the

xi'S:

lin(f - f 2) (lnlf1 / f 2 il)
fdf, d ,

1 2 1 2

The integrand is only increased if we replace f - f2 by

l- 'f - so we assume 0 ( f ", inserting absolute vaii-e of

differences.

Further by symmetry it is sufficient to consider the case

f, 2"

f F n(('" ) A (1 + 6
f df, df5

Let f= y, f /f = 1 - x: our integral becomes
1 21

I F Itn((l - x)- A (1 + 5')] 1
I ...... dx f[-£n(xy)I dyx
0 0

x

the i'ner integril is (1/x)J[-Xn z]i dz, which by a previous computA-
0

tion is equal to a polynomial in I-Xn x): everything amounts to

showing that
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I-Xn x]1Fm[Xn((l - x)-1 A (l + 6 ))]

-___ ~Ln~l ___- dx
x

is integrable on 10,11. The integrand is bounded except at x = 0,

where it is bounded by (-tn x)t Fm(2x))/x, i.e., a polynomial in

(-tn x) - this we know to be integrable.

Thus, we finished proving that the first replacement can be made.

B) Second Replacement

)nce this first replacement is done, the sum in the integrand is,

by our previous argument, bounded by

K7 Min y n-k r n *--

So, to show that the second r-placement :an be done, we have to show

tha t-iis function ,s integrable for

J,[(y) aT(x) l a- )
lix I-a qince r ; a -

over say a < 1/2 - thus that

dar dT(y) .n-k En : " X <

For the first integral we can use our pr-vious computation, and

the integral over a disappears, so we are left to prove that

F+ A^ e -m)Fro Ci- •x

f ... dT (x) <-

x x
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and this we have shown previously also. So Claim 2 is proved. Q.E.D.

Thus we have to compute

dt (y) dk (x) n
li r lim f n y f n -k__ n )(nC)
r1+0 °° d 0 X gy

n[i + [Ma(sx  • x)/N(O - x,e • 2- da

Letting Ma = u, this becomes

1 i (Y) dT( (x) Mn :lim lim-I f -- f I (ncx)(ney)

£n1 [( x  Vy 2 du
Zn[I + ~U(X x)/N(O - x, • y)] ] --

Now, the limit when M goes to infinity becomes independent of

n, so we get, using for short e for x and n for EY.

1m dT (y) dT (X) Mlim 2f Ily f xj f I (IIE:)(fnn:
M+( Uj 0~,

Xn'l + ME • X)/N(O x,n • y)
2

] du

Denote the inner integral by *M(x,y). We have

M1c.xl/N(O.xn.y) v2 dv

02
(x,Y) I ( fie. (fl j) f Xn(l + ) L -

I (IIE )in )I e.x l/N(O .xn.y) * M2w2  dw

Efn 
0

= f Y (fc)(nn )T[w 4 Ic.xj/N(o.x,n.y)j]Zn(1 + M w2 )
) c1
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If instead of £n(l + M2w2) in this integral we had a constant,

say In M , the integral would still exist because the integrand

vanishes in a neighborhood of the origin, and would have a value equal

to £n M2  times

[ (n1- )(Rn )InI. - (nf.)(fnlrn)n N(O . x,n . y) = 0

- the first term being zero because of 7(fnl) and the second because

So we still have

* /x,y) = ( )( nj)[w 6 xj/N(O • x,n - y)! 1n(w2 + M-2 dw

0 Efl

Now the integrand is uniformly bounded, and vanishes outside some closed

interval disloint from zero, so that by Lebesgue's dominated convergence

theorem

lim (x,y) = [ l(In,, 2) 2= 2n w din w
0 En wC ,fl

f dn w = I (H )(n (o

w-O c,n Cr N(" * Xii y)

TIE (lc.)(Ini)nT) I x [ ( n2N(O x,Ti y)

- 2 (Hi )(n )Xnje - xlfn N(O x,n . y)

-- 2[(,: .).nl xj I o][[(in tn N() • x, n y)]
C n
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(the first of the three sums is zero because of (Hr) and the second
3

because n(lE ))

Now we have to show that when we apply the first two integrations

to qPM - lim *M' we get something going to zero, i.e., that
M

Claim 3:

i dTn-k(y) dTk (X)
lim ( J x- I ( n n,)( n)I[w ' • N x n • y)M ® yj S 0 E'Tn

Zn(l + (Mw)-  - =w

By Lebesgue's dominated convergence tneorem, since Zn'I + %Mw)-2 )

decreases pointwise to zero, it will be sufficient to show that

/dT n-k (y) dTk(X)x i ,qj<T.)w •: /(Oxr y

flyj I O, Y);n

-2 dw

Zn(i + w) - <
w

or, replacing w by z /  that

di n-k(Y) dik (X) O2) i 2I-Wd I (RE )(fln )Ilzc .; >, "1 (° . x" " Y)1
, R . 0 C Ex.l

X n ( . + z ) -d z <
z

If z is close enough to zero (smaller than min N2 (O ( xy))

y
then the sum ) is identically zero (i.e., for all x and y), so we

e,l
can replace dz/z by dz/(l + z), and get
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d n-k(Y) fdtkX) k(2 2

f nx II (ej)(nn)1jzje x 2 > N2(0 - x,n - y))Yj ax j ,n UII

d in2 (l + z) < ?

Let us now try to bound the sum
Efl

Pairing the terms where n has opposite signs we get
1

= [ (HE )(In)I(n z1<cx>I2 < n
E,n cn

using n for N2(0 x, + nlyl,n 2Y2,n3Y3 ...).

Pairing now the terms where E has opposite signs, we get,

letting u = x U+ U + E ;2, u u _ E x 12:i>! j  J  +1 ,u =,

n u n u n n
1( ){[1(_- 4 _.) + 'h- -)j I- < z <

n u - U Iu U
Cfl £,i + - - + + +

u n n n u n n n
(+ ~ f+ +\ -

'U '' u n nu n+
- + + - + + - +

Thus we get by integrating

n u n u u n
St)nd in (1 + z) (- 4 -[+ ( ) + I(- 4 --)A! + I- < -- )A2

n u n u~ 1 u- n 2• , + -- + + +- 4

u n

+ <
U+ n+ 3

where

I~-> 
+fl) 

2n )(tn 2(l + n - 2(l + n +)) (n )( n +u
A + u - + +

n• )(£n - _)(1 £(£n(l + n-) - n u + 2 4 K( Vn_ > n+*nni u+
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"n n

in 2 1 I(u > uI(u > u)(tn2(i u n2 (1 - I(u > u)

n+ + u U

(n /n+ + flu+ )(n( l + n+) - u ) * 2 4 K I(u > u_)(in u_)(I - tn u
l/n+ + l/U+ + + U -

and similarly

U

A3 (KI(u+ < u)(tn -) - u+)

Remark that A 2 is used only when 1 < u+/u- < n_/n + K1, so

that, by modifying the constant K. one can replace the factor

(I - in u ) by (i - in u ).

Obviously this formula remains valid - readjusting K - whnen re-

interpreting n+ (resp. u+) as Vprevious n+ (resp. u77

Remark also that in all three cases, one uses the smaller o:f tne

f'actors +L nuu_) , len(n_In+), Thus we get simply

JI d tn2 (1 + z) 4 K I(n > n )L,\1in(tn -= tn -- (l - in u
En+ n+ -

As already remarked before, the equivalence if norms in Rn

implies that n(n_/n) K'y1(<K'). In particular, if we assume for

instance u+ > u_, we can replace Jtn (u+/u_)I by

tn[Min((u+/u-),eK)] K K"((u+ - u_)/u+). Now u+ > u_ is equivalent to
u > 0, so u+ - u_ = EU + xI -C lU- XI = 2 Min(cux I ) = 2 Min(lul,x,),

and u+ = lul + xI. So we can replace JIn(u+/u_)I by

(Min(Iul,x 1 ))/(Iu + x1) if u+ > u and thus also in the dual case.

Thus we get
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x1 A Jul

!, Id I 2 (I + z) 4 C 1(y ^)(A - InI<c,x>I)

But yl could have been any yj, and in particular their minimum

y• Using now our previous formula

I Min(8,(Y )I)dT(Y) 4 K B1ln 8 1m-1mm

we get

f dT(y) j Id £n2(1 + z) C'j(I - £nl<cx>i)yltn ylm -I
A Jlyj

where

x 1 ulx1

We have to show that this is integrable dT(X)/fXj, at all points

of A k r {x 1 xi V i} - if another coordinate was minimal, let this

play the role of xI .

There is no problem if x > 0 because tnl<e,x>l is integrable

for Lebesgue measure, and y~in y1m
- I  is bounded.

Fix now an E. If xI = 0, and Jul > 0, then the factor

(I - £nI<E,x>I) is locally bounded, and y is locally of the order

of xI, so that we have to show the integrability of xltn xl lr(dT(X))/nXi

on {x 1 xi } which we have already done before.

There remains thus only the case where xI = u = 0. In that case,

as we argued already before, there exists two different coordinates j

and J', different from 1, such that x > 0, x,, > 0, C = -1. We

j xJ, J ]
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can assume without loss of generality that J = k, j1 = k - i, and can

change coordinates

1 xk u, xI ... Xk-2

k k
using the equations I C x. u, I x i.

i=2 i=l 1

We Therefore have in effect to prove that - assuming without loss

of generality that el = 1:

×,A uj x + Jul k-2 dx.
1 (r - n1+ i) x-- - £nr' 1<

1nu x,! , + -T- In~ 1-,ATU7 x.
luj~j ×i^du Tix

i

or, integrating over xi  for i > I:

x A u ,~x +k-3 dxf (I - Xnlu + xi) x A xu k-d3 d:U4 x + Jul n A - )£ x, dux
O~xxl

0(-X(2

or
1 1"

J in I x - uj I n -u) n x1s du- <
S0 x + u xAU x

Replacing £n xj by 2n(x A u)ls, and dx/x by dx/(x A u), one

sees it is sufficient to consider x 4 u:

JI(O 4 x ' U 4 1)[1 - Xn(u - x)j ir(l +-!)jIn x) du dx < ?

Since £nr(l + u/x) can be written as a polynomial in In(x + u) and

in u, and since Itn(x + u)l 4 ltn(u - x)I, the whole thing amounts to

proving that
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Itn(ux)Irin xj 8 du dx < (whatever be r , s > O)

or, letting z = x/u

(-Xn u - £n(l - Z))(-In u - in )s du <

0 0

the integrand in the second integral is a polynomial in In u, whose

coefficients are polynomials in £n z and In(l - z).

Since any power of £n u is integrable, the first integral yields

a polynomial in In z and Xn(l - z); since 1/1 + z is bounded, the

outer integral boils down to

+ f)jIn zIritn(l - z)1' dz
0 112

which is finite for the same reason.

This finishes the proof of Claim 3. Q.E.D.

It follows that

dT (y) dT k(x) dTn-k(Y) dT k(x)
*l i m f d f  x M(XY) = f  (lim M(x,Y))
M0 1J M H nj M0

10(1cj)Xnl<c,x>l 1.(ln)In N(O •x,n • y)

-2[f £ d k(X)][ f  ( .ndT nk(y)]
Ak j an-k

and therefore that
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1(ncJ i )1nl + (M( E s )/N(c . s)) 2

lim lim f i j -Ck dT (S)

+0 M- M A n I s,<n 2 1s n

i 4-k

1(nn i)In N(O x,n • y)

Ak fnyk ty- dTnn-k(Y)

where

1(icj ).nl<c,x>I

A k- I d N dTk(x)

If we use also A = -1, we get therefore
0

1(fln )in N(n y)

p(V > 0 ) (-l)n/2(2w)-n'-A + Afl dT (y)

ri(ll n 05 R)Q
nE{l~l n~i~(nin )in N(n - y)

+ Ay6  11 y dTn-1 6 (y)'
aE{0,l} J YEA 6 =0 i

(o ..... o),(i,.....i) <6,y>=O j

(remarking that Ak = 0 if k is odd). Thus:

P(v ) 0 V i) u (-l)n/2(2i) - n  : A in N(y) d ()

n a J .n n Ijy =O
J 6 P i Y= j : 0

where

" 
Tn_ 6 is Lebesgue measure on the corresponding set,

" the integrals are Cauchy principal values
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f for 6 = (i,...,i), the integral over the empty set is set to -1

A -, A = £-i (x)
0 'k fixk

If each vi has norm 2, total mass zero, and all v. are

mutually singular, P(vi > 0 f i) = 2-n  obviously. Also RV =

so that N(y) = sup <x,y> 11yil = I.xel..lyl.

Since we integrate on the unit ball, it follows that in this case

our equation yields

2-n = (_)n/2 (2w) -n[_An

thus

A = _(_I)n/2 n

n

thus

(-) n/2(2w)-nAk = -2 (-i)n12,-n(_l)-k2tkl

= _2-nI(.i) - ( n - k)/2 - (n - k)i

2
- n

An-k

Thus:

p(v. 0 ¥ i) = 2-n[l - n (-i) %I2 f£n N(y) dt (y)]

1 E(O- 1 1 6 ly H

6*0 T :j:(l-6 .)yj=O J :6 l
16 even
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This formula is valid for the case n even, say n = 2k. But

P(VI ".. V2k- 0) = P(v V 2k 0) + P(Vlv 2 , ... ,V , IV 0)

can be computed from this formula, and yields then the same formula

with n = 2k - 1: thus the formula is valid for all n ) 1.

Thus, for all #I ) 1:

P(v , 0 Y i E I) = 2-(#I)[i -. Ln Nf dT(y)]
i*JcZ (wi) yER n d
[Je~en] fll=l -

where

N (y)= sup [yV(W.
IIx"1 .j.

Remark that, by the symmetry of the norm (Nj(y) = (-y)), tne

restriction to #J even is not necessary: the integral will be zero

for #J odd.

The integrals have to be understood as Cauchy principal values, in

the following sense: define a set C C R to be symmetric it':

ye C (jy),.E C; say that C consists only of non zero elements

iff y E C => y, * 0 Y j E J. Then the integral is to be under6Lood as

the limit of the integrals over an arbitrary sequence of closed

symmetric sets Ci consisting only of non zero elements, and such that

the measure of the complement of Ci goes to zero.

The norm lyl used to derive the formula was the

norm lyj1, but the formula of change of variables for surface

measures yields now that it remains valid for any norm

11 on R such that (y 1 ... Y) = (Iy 1  y2
1 

..' lykl)'"

I.
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The same formula permits us to rewrite our expression using the

surface measure a on the unit sphere of the norm Nj:

P(V (X) ) 0 i I) = 2-#I[l + f " daj(y)]
1*Jc1 (Wi) #J f1

[#J even] je j

Remark: Obviously the formula we got is not very transparent -

this may be due to the fact that it has to reflect the peculiar geometry

of the positive orthant. It wculj therefore be interesting to have also

an expression for the density over directions - i.e., on projective

space.

SECTON 4: To Mess Everything Up: Some Extension Possibilities

4.l Extension of the Cylinder Measure

Given a cylinder measure P on a locally convex space E with

dual V,, one can use Kolmogorov's existence theorem for a projective

limit of measures as done in the proof of Theorem 1, and a Hamel basis

of E', to obtain an equivalent characterization of P as a countably

additive measure on the Baire 0-field of the weak completion Z of E,

using also a recent result of Edgar-i/

Using this, one can then best define the corresponding integral in

the following way: let a vary in the increasing net of all finite

subsets of E'. For any a, and any x E E\E, let V a(x) =

{y E F'(y) = $(x) V * E c). For any bounded function f on E, define

its extension f to E by ?(x) = lim sup f(y) at all x E A E.
a yEV(x)
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Finally define the upper integral (f) as the upper integral of f

for the countably additive measure V on the Baire 0-field of S.

Given i, one can use finitely additive integration theory in the

standard way (cfr. for instance Dunford and Schwartz, Linear Operators,

Part I). More precisely, one has:

i) (I) .i -l) = -1, i is monotonic;

2) a > 0 implies (cf) = (f);

3) (f + g) ( (f g) + (f g) < u(f) + 5(g) whenever i(f) < +wj

(g) < +- (the first inequality is subadditivity, the second

follows from the corresponding formula for upper integrals,

and from ? v = f v g, ? A = f g

4) (f v (-n)) + (f) ¥ f, (f A 0) > - => (f) = lim A(f A n).

Those properties immediately imply that L = {fi(f) + W(-f) } is a

vector lattice containing the constants, and that p is a positive

linear functional on L. Hence A = AjIA E L) is a Boolean algebra

and a finitely additive probability on A. Hence f E L and

s < t imply Ii*f > s) > u*{f ) t) (reduce to s = 0 4 f 4 t = 1, then

f f dp is in between - we use P.(A) = sup{ (f)jf E L, f 4 1I, and

1j*(A) = inf{Wf)jf E L, f > I A}). Therefore, if f E L, then for all

but countably many t's, u*{f > t) = p.{f > t): {f ; t) and {f > t}

are in A. Hence any bounded f E L can be approximated uniformly by

A-measurable step functions, and thus

L CL (A, w) , with 5(f) = f u for f E L.

Conversely properties (1) to (4) imply also that
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V f, (rn ) rN , [ i(f > -- , 5(1{r < f - E}) + 0 V C > 0nrEN( (fL > Glf
n-0

lim sup sup J(fk - f n)+  0] => lim i(f ) ) (f)
no k)n

and hence that, if fn is a Cauchy sequence in L converging in

l-measure to f, then f E L is the norm limit of fn. In particular,

choosing f E L (A,P) and fn step functions, one obtains

L = L1(A,u). One concludes now easily that 5 is at least as good as

the finitely additive integral: T f, i(f) < f f dp. Obviously,

L = L1(A,P) contains both the cylindrically integrable functions and

the bounded continuous functions on E.

Of course, one could still get conceivably more integrable func-

tions by refining i - for instance if one could prove T-smoothness

of P on T, one could use its regular extension to the Borel sets of

for defining ; or one could try to get a lower T, for instance by

restricting the y E V (x) to be of essentially minimal norm.

4;.2 Using More Smooth Cylinder Measures

By Theorem 1, the invariant cylinder measures corresponding to

different pairs (m,o) are mutually singular. Thus the integral of a

function - and even its integrability - may depend in a highly irregular

way on the pair (m,a). To smooth this out, one could choose m and

a by some probability distribution P(m,a). Since the correspondence

preserves convolution, and because of the idea that in some sense the

sum of two independent random elements of B(I,C) is a fortiori random,

one should certainly take P absolutely continuous with respect to
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Lebesgue measure, and in some sense invariant under convolution. Since

D X(x)dQ(x) = SD m+X(X)dP(m,o)dQ0 (X)

= fD m+ )(X)dP(m,o)dQox

= fD' (x)dP (m,o)dQo(X)
m+ax 0

we see that for defining the value, we consider integrals of a fixed

X
function with respect to the distribution P of (Xm,Xo) (where

(m,a) is P-distributed), and let the scale factor X go to -. Asking

that this family P be invariant under convolution is asking that P

be stable. This leads to choosing m and a independently, m with

the symmetric stable distribution of index a, and a with the one-

sided stable distrioution of index a (thus a < 1). The lim sup of

the (upper-) integrals when the scale factor X goes to - is then

clearly decreasing when a + 0, since 8 < a the stable distribution

with index a can be viewed as a mixture of stable distributions with

index a (choosing their scale factors according to the stable one-

sided distribution with index 6/a).

One is thus led to a formulation of the following type:

For any bounded measurable function f on R+, let

p(f) = lrm lim sup ff(Ax)dPa(x)
at+O X+W- 0

where Pa is a one-sided stable distribution with index a (its scale

factor does not matter). Let denote a suitable extension (cfr. 4.1)

Aumann and Shapley [19741) of the invariant cylinder measure where m
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and a are chosen independently with stable distributions of index

a (a < i) - symmetric for m and one-sided for a.

If f is a function of several variables, let p (f) denote p of

the function of a real variable x obtained by holding all variables

but x fixed in f. Similarly X (0) will indicate that all variables

but X are held fixed in 0.

* Let V(X) = p( ( (D (X))), and 0 (x) = -pX(-u(-D (x))): then v

has a value € if t = and is additive.
V V -V

.3 Reversing more limits and integrals?

As a general rule, one gets functionals with a larger domain by

averaging before going to limits rather than after - in our context,

this was already illustrated in "Values and Derivatives." Now the v

appearing in the above formula for I is not the given game, butV

obtained from it by the operator * of Section 1, which itself involves

both averaging and limit operations.

Let us first show how 9) could be replaced by an operator - say

' - where the averaging occurs before the limit operations, in order to

remove as much as possible the basic restriction that we can talk only

of games that have an extension in some sense.

Remark first, that it is sufficient to compute w(X) = *(v)(x)

for step functions X - either because V(w)[x - X'1 4 1x' - xN O Ewl

implies (for lwl < -) that w can anyway be uniquely extended to

B(I,C), or using the fact that the cylinder measures on B(I,C) are

also cylinder measures or the space of step functions E B(I,C).
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We return to the basic idea t:evl,; the proof in Mertens

[19811 of both theorem B and its application to the extension of games -

that was used in Section 1.

Let X denote a step function, and let w denote a finite

measurable partition such that X is constant on every element of n.

Given any vector v of non atomic elements of FA, let, for any

A C n, 0A  denote an increasing family of measurable subsets of A witr.
t

A A A
v(OA = tv(A) (f t : 0 ( t Q 1) (and with 00o = 0 01 = A).

For any n > 0, for any permutation a of {i,...,n}, and for any
, ,i =0 A  0 A

{-Ci.n define = 0i/ (i-l)/n' and, denoting (o,e) by w,

let 0 be defined by ( U xg(i)u a([nt]+') where [X] denotes

the integer part of x, and B, = 0Aif
K ((k-l)/n)+t \(k-)/n if

l, B k  0 A=/:\3 Ak/n-L if e, = -i -and where tn = t - ,nt,/n.

r, A,w
Then, 'or every w and t we still have v(0 t ) tv(A), and f

w is chosen at random, we have for all x C A iP(x C 0A1u) - ' 1/2n.

(The E is not strictly necessary, it is dusT introduced to preserve

the symmetry with the opposite order.)

Let now, for any it, and any collection 0 of such increasing

families (OA) , and any n, Qn denote the finite probability
t ACi n

space where independently for each A C i, some w = wA is chosen at

random.

Also, for any i-measurable ideal set function X, and any
A* A 1 2 1 2

W E let )( = U 0(A): then X 1 X => X < X v()

v(X) V X, and IE(X) - X < 1/2n.

Let also, for a general w-measurable function X,
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×= IMax(O,min(1,x))

Define now

1

(,V x) f( (v[(t + X) l - v[(t - TX) 1l))dt

O ,n (n!)

(where v still denotes the constant sum game corresponding to the

originally given game).

For any given n, and any vector v, denote by F the set of

7WV
all possible families 0 ' . For any given w, the F form a filter

F when v ranges over the increasing filtering set of finite subsets

of the nonatomic elements of FA.

Similarly the partitions w can be ordered by refinement. Then

lim lim lim lim 'P ',v , (X) = Wv(x) should be the analog of our
T+O i F n-< 7T,Q n

from Section 1 but with all limits done after any averaging.

More formally, define a filter F on 4-tuples (T,n,eW' ,n) (more

formally on (R x (I F ) x N)) by F C F if I T : : 0 < ITI <
Tr

ntVi > 7t 0 V ((v .. k V )) v E F V'T n V n > n

(T,7,p,0 'v,n) G F.

Then, we define ' by v C Dom(*) = Ilim 'T,v (X) exists for any
F n t, 0 n

step function XI => [(v)](X) = lim P,V (X) V X step function.
F n, ,n

Obviously Dom (') is a closed (using 11'11 = 1) symmetric space,

and ' is a positive linear symmetric operator on Dom (*). Further

II'PI 1 - this follows from completely similar computations as those in

Section 1, and is the main point where the specific structure of the

'V => X • X V ) is used. Similarly one gets, under mild
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continuity assumptions on v 0i and I, that [(v)I(1) = v(I).

One could thus use this p followed by the operation described in

the previous section. However it is now tempting - and possible - to

put all averagings before any limit operation.

But to do this, one may want to consider an alternative to

integrating with respect to an appropriate extension of the (finitely

additive) cylinder measure - in order to sidestep the difficulties of

finitely additive integration theory (in what concerns the integrability

of functions, and in what concerns changing the order of integration and

the permutation of limits and integrals - although my old paperk/ helps

a good way for those last two questions).

The cylinder measure Q can be obtained - as shown in the proof

of Theorem 1 - in the following way: first select m and o at random

according to P, next, for any partition w, select independently on

each partition element the (constant) value of X on that partition

element as a Cauchy (m,o) random variable. This gives an approxi-

mation Q to Q, that converges weakly to Q on - when R is

refined. Q is a (counta.ly additive) probability carried by the

finite dimensional subspace )f B(I,C) of all i-measurable step

functions.

Now the operator D and the averaging for Q can without

problem be pushed before the lim , together with all other averagings
F

and then is no integrability problem at least if v is of bounded

variation. On the other hand the limit over all refinements of n is

best retained after the lim has been done (and before the lim over
F
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This was just to point out that the formulation adopted in this

paper is by no means unique or optimal - and that in particular one

could to some extent dispense altogether with the assumption 
that the

game has an extension. It was adopted chiefly for expository reasons.

Certainly a lot remains to be done - i.e., convincing theorems -

to get a good formulation.

4
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Footnotes

i/ The equality Y(x) = P(U J. has denity 0 at x) has to be
i0

proved only when a > 0: we claim that a.s. on x U Ji. this

set has density zero at x. It is indeed sufficient to prove this

conditionally to the set of atoms and tne fraction of a coming

after x (or before) - which reduces (by renormalization) the

problem to the case x = 0. Let XT (1t) a ia/a ) A Tj(z.

t): X. is an upper bound for the density of U J, up to time
i

t, so it is sufficient to show that X L 0 a.s. But, if Ft

denotes the a-field generated by all variables t Zi, tnen,
when reversing the usual order on the time interval 10,11, X
becomes a positive supermartingale w.r.t. F., whose expectation
goes to zero as we have seen: thus Xt goes to zero a.s. We
would like to stress that this equality cannot be dispensed within
a random order approach: indeed, if f(x) = I(x > q), and if some
player of the ocean pivots, since he is negligible, it is in fact
the infinitesimal coalition ds that immediately follows him that
pivots - so to impute this event to the credit of the ocean, one
needs that this infinitesimal coalition consists essentially only
of oceanic players - i.e., the ocean must nave density i to the
right of q. The same applies to the left of q if
f(x) = i(x > q).

2/ That is, for any P in the right hand member, there exists a
unique cylinder measure with this Fourier transform, and this
cylinder measure is invariant.

3/ "Measurability in a Banach space" Indiana University Mathematics
Journal, Vol. 26, No. 4, pp, 663-677 [19771.

4/ J. F. Mertens: "Integration des measures non denombrablement
additives: une generalisation du lemme de Fatou et du theoreme de
convergence de Lebesgue", Annales de la Societe Scientifique de
Bruxelles, t. 84, 88, 231-239 [19701.



i -85-

References

Aumann, R. J. and L. S. Shapley 11974). Values of Non Atomic Games,
Princeton University Press, Princeton, New Jersey.

Berbee, H. [19811, "On Covering Single Points by Randomly Ordered
Intervals," Annals of Probability, 9, pp. 520-528.

Hart, S. [19801, "Measure Based Values of Market Games," Mathematics of
Operations Research 2, pp. 197-228.

Mertens, J. F. [19801, "Values and Derivatives," Mathematics of
Operations Research 5(4), pp. 523-552.

Mertens, J. F. (19811, On the Density of the Extreme Points in the Unit
Ball of Spaces of Type C(K), CORE D.P. 8123.

Shapiro, N. Z. and L. S. Shapley (19711, "Values of Weighted Majority
Games with Countably Many Players," Internal Rand Note, October.

Tauman, Y. 119811, "Values of a Class of Non Differentiable Market
Games," International Journal of Game Theory, 10(3/4),
pp. 155-162.

,.~b m m*m



- 4- z- -------- -- 7 7, -

-- -z

- , -

4, - - . -4-



4 -



Reports in this Series

376. "Necessary and Sufficient Conditions for Single-Peakedness Along a
Linearly Ordered Set of Policy Alternatives" by P.J. Coughlin and
M.J. Hinich.

377. "The Role of Reputation in a Regeated Agency Problem Involving Information
Transmission" by W. P. Rogerson.

378. "Unemployment Equilibrium with Stochastic Rationing of Supplies" by
Ho-mou Wu.

379. "Optimal Price and Income Regulation Under Uncertainty in the Model with

One Producer" by M. I. Taksar.

380. "On the NTU Value" by Robert J. Aumann.

381. "Best Invariant Estimation of a Direction Parameter with Application to
Linear Functional Relationships and Factor Analysis" by T. W. Anderson,
C. Stein and A. Zwnan.

3 82. "Informational Equilibrium" by Robert Kast.

383. "Cooperative Oligopoly Equilibrium" by Mordecai Kurz.

381. "Reputation and Product Quality" by William P. Pogerson.

385. "Auditing: Perspectives from Multiperson Decision Theory" By Robert
Wilson.

36. "Capacity Pricing" by Oren, Smith and WIlson.

J87. "Consequentialism and Rationality in Dynamic Choice Under Uncertainty"
by P.J. Hammond.

86. "The Structure of Wage Contracts in Repeated Agency Models" by W. P.
Rogerson.

389. "1982 Abraham Wald Memorial Lectures, AtatirTinear Statistical
Re~ationshlps by 7.W. Anderson.

390. "Aggregates, Activities and Overheads" by W.M. Gorman.

391. "Double Auctions" by Robert Wilson.

39r. "Efficiency and Fairness in the Design of Bilateral Contracts" by S.
Honkapohja.

393. "Diagonality of Cost Allocation Prices" by L.J. Mirman and A. Neyman

394. "General Asset Markets, Private Capital Formation, and the Existence
of Temporary Walrasian Equilibrium" by P.J. Hammond

195. "Asymptotic Normality of the Censored and Truncated Least Absolute
Deviations Estimators" by J.L. Powell

396. "Dominance-Solvability and Cournot Stability" by Herve Moulin

J97. "Managerial Incentives, Tnvestment and Aggregate Implications" by
B. Holmstrom and L. Weiss



Reports in this Series

398 "Generalizations of the Censored and Truncated Least Absolute Deviations

Estimators" by J.L. Powell.

399. "Behavior Under Uncertainty and its Implications for Policy" by K.J. Arrow.

400. "Third-Order Efficiency of the Extended Maximum Likelihood Estimators in

a Simultaneous Equation System" by K. Takeuchi and K. Morimune.

401. "Short-Run Analysis of Fiscal Policy in a Simple Perfect Foresight Model"

by K. Judd.

402. "Estimation of Failure Rate From A Complete Record of Failures and a

Partial Record of Non-Failures" by K. Suzuki.

403. "Applications of Semi-Regenerative Theory to Computations of Stationary

Distributions of Markov Chains" by W.K. Grassmann and M.I. Taksar.

4o4. "On the Optimality of Individual Behavior in First Come Last Served Queues

With Preemption and Balking" by Refael Hassin.

405. "Entry with Exit: An Extensive Form Treatment of Predation with Financial

Constraints" by J.P. Benoit.

V 406. "Search Among Queues" by A. Glazer and R. Hassin

407. "The Space of Polynomials in Measures is Internal" by J. Reichers and Y.

Tauman.

408. "Planning Under Incomplete Information and the Ratchet Effect" by

X. Freixas, R. Guesnerie and J. Tirole.

409. "A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition with

Large Fixed Costs" by Eric Maskin and Jean Tirole.

,, r:. (- c" te ,,cia' Welfare Benefits off Labor Projects"

'.1. "Transve:as'i'ty noiti,.s:' ro e Infinite Horizon Discrete Time Optimiza-

tio-% lrbles" by Ivar .kelan: and Jose A. Scheinkman.

*fl2. "Asympt ti,-- Eff'icierncy the Partial Likelihood Estimator in the Proportional

Hazard Model" by Aaron K. Hahn.

413. "A Munte Crlo (7,,mparison of iEstimatcrs for Censored Regression Models" by

Harry J. Paarsch.

414). "Instrurental-Variable Fstination of an Error-Components Model" by Takeshi

Amemiya and Thomas E. MaCurdy.

415. "An Axiomatizationof the Non-Transferable Utility Value" by Robert J. Aumann.

416. "Diffusion Approximation in Arrow's Model of Exhaustable Resources" by

Darrell Duffie and Michael Taksar.



Reports in this Series

41T. "The Shapley Value in the Non Differentiable Case" by Jean Fransois Mertens.

"T' -'J - : ~~~.. ... .l . .... ... i..illl~ i




